Ontology highlight
ABSTRACT: Statement of significance
Preterm Birth (PTB) still represents a serious challenge to be overcome, considering its implications on infant mortality and lifelong health consequences. While the causes and etiologies of PTB are diverse and yet to be fully elucidated, a common pathway leading to a preterm delivery is premature cervical remodeling. Throughout pregnancy, the cervix remodels through changes of its microstructure, thus altering its mechanical properties. An appropriate timing for these transformations is critical for a healthy pregnancy and avoidance of PTB. Hence, this study aims at understanding how the mechanical function of the cervix evolves during a normal and preterm pregnancy. By performing cyclic mechanical testing on cervix samples from animal models, we assess the cervix's ability to recover from moderate and severe loading. The developed methodology links mechanical parameters to specific microstructural components. This work identifies a distinct biomechanical signature associated with inflammation mediated PTB that differs from PTB induced by hormone withdrawal and from normal term remodeling.
SUBMITTER: Jayyosi C
PROVIDER: S-EPMC6336396 | biostudies-literature | 2018 Sep
REPOSITORIES: biostudies-literature
Acta biomaterialia 20180729
A well-timed modification of both the collagen and elastic fiber network in the cervix during pregnancy accompanies the evolution of tissue mechanical parameters that are key to a successful pregnancy. Understanding of the cervical mechanical behaviour along normal and abnormal pregnancy is crucial to define the molecular events that regulate remodeling in term and preterm birth (PTB). In this study, we measured the mechanical response of mouse cervical tissue to a history of cyclic loading and ...[more]