Unknown

Dataset Information

0

Molecular Dynamics Simulations of Wild Type and Mutants of SAPAP in Complexed with Shank3.


ABSTRACT: Specific interactions between scaffold protein SH3 and multiple ankyrin repeat domains protein 3 (Shank3) and synapse-associated protein 90/postsynaptic density-95?associated protein (SAPAP) are essential for excitatory synapse development and plasticity. In a bunch of human neurological diseases, mutations on Shank3 or SAPAP are detected. To investigate the dynamical and thermodynamic properties of the specific binding between the N-terminal extended PDZ (Post-synaptic density-95/Discs large/Zonaoccludens-1) domain (N-PDZ) of Shank3 and the extended PDZ binding motif (E-PBM) of SAPAP, molecular dynamics simulation approaches were used to study the complex of N-PDZ with wild type and mutated E-PBM peptides. To compare with the experimental data, 974QTRL977 and 966IEIYI970 of E-PBM peptide were mutated to prolines to obtain the M4P and M5P system, respectively. Conformational analysis shows that the canonical PDZ domain is stable while the ?N extension presents high flexibility in all systems, especially for M5P. The high flexibility of ?N extension seems to set up a barrier for the non-specific binding in this area and provide the basis for specific molecular recognition between Shank3 and SAPAP. The wild type E-PBM tightly binds to N-PDZ during the simulation while loss of binding is observed in different segments of the mutated E-PBM peptides. Energy decomposition and hydrogen bonds analysis show that M4P mutations only disrupt the interactions with canonical PDZ domain, but the interactions with ?N1' remain. In M5P system, although the interactions with ?N1' are abolished, the binding between peptide and the canonical PDZ domain is not affected. The results indicate that the interactions in the two-binding site, the canonical PDZ domain and the ?N1' extension, contribute to the binding between E-PBM and N-PDZ independently. The binding free energies calculated by MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) are in agreement with the experimental binding affinities. Most of the residues on E-PBM contribute considerably favorable energies to the binding except A963 and D964 in the N-terminal. The study provides information to understand the molecular basis of specific binding between Shank3 and SAPAP, as well as clues for design of peptide inhibitors.

SUBMITTER: Piao L 

PROVIDER: S-EPMC6337207 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular Dynamics Simulations of Wild Type and Mutants of SAPAP in Complexed with Shank3.

Piao Lianhua L   Chen Zhou Z   Li Qiuye Q   Liu Ranran R   Song Wei W   Kong Ren R   Chang Shan S  

International journal of molecular sciences 20190108 1


Specific interactions between scaffold protein SH3 and multiple ankyrin repeat domains protein 3 (Shank3) and synapse-associated protein 90/postsynaptic density-95⁻associated protein (SAPAP) are essential for excitatory synapse development and plasticity. In a bunch of human neurological diseases, mutations on Shank3 or SAPAP are detected. To investigate the dynamical and thermodynamic properties of the specific binding between the N-terminal extended PDZ (Post-synaptic density-95/Discs large/Zo  ...[more]

Similar Datasets

| S-EPMC6940626 | biostudies-literature
| S-EPMC7215871 | biostudies-literature
| S-EPMC2770623 | biostudies-literature
| S-EPMC3667132 | biostudies-literature
| S-EPMC8697927 | biostudies-literature
| S-EPMC6873649 | biostudies-literature
| S-EPMC4415035 | biostudies-literature
| S-EPMC1302719 | biostudies-literature
| S-EPMC3566597 | biostudies-literature
| S-EPMC5992718 | biostudies-literature