Unknown

Dataset Information

0

PAGE4 promotes prostate cancer cells survive under oxidative stress through modulating MAPK/JNK/ERK pathway.


ABSTRACT: BACKGROUND:Prostate cancer (PCa) is one of the most common cancers in male worldwide. Oxidative stress has been recognized as one of the driving signals pathologically linked to PCa progression. Nevertheless, the association of oxidative stress with PCa progression remains unclear. METHODS:Western blot, q-RT-PCR and bioinformatics analyses were used to examine PAGE4 expression. Comet assay and Annexin V/ PI dual staining assay were performed to investigate DNA damage and cell death under oxidative stress. Mouse xenograft model of PCa cells was established to verify the role of PAGE4 in vivo. Transcriptomic analysis was performed to investigate the underlying mechanism for the function of PAGE4 under oxidative stress. Western blot assay was conducted to determine the status of MAPK pathway. Immunohistochemistry was used to identify protein expression of PAGE4 in tumor tissues. RESULTS:In this study, we found that PAGE4 expression was increased in PCa cells under oxidative stress condition. PAGE4 overexpression protected PCa cells from oxidative stress-inducing cell death by reducing DNA damage. PAGE4 overexpression promoted PCa cells growth in vivo. Mechanistically, PAGE4 promoted the survival of prostate cancer cells through regulating MAPK pathway which reflected in decreasing the phosphorylation of MAP2K4, JNK and c-JUN but increasing phosphorylation of ERK1/2. CONCLUSION:Our findings indicate that PAGE4 protects PCa cells from DNA damage and apoptosis under oxidative stress by modulating MAPK signalling pathway. PAGE4 expression may serve as a prognostic biomarker for clinical applications.

SUBMITTER: Lv C 

PROVIDER: S-EPMC6339303 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

PAGE4 promotes prostate cancer cells survive under oxidative stress through modulating MAPK/JNK/ERK pathway.

Lv Chengcheng C   Fu Shui S   Dong Qingzhuo Q   Yu Zi Z   Zhang Gejun G   Kong Chuize C   Fu Cheng C   Zeng Yu Y  

Journal of experimental & clinical cancer research : CR 20190118 1


<h4>Background</h4>Prostate cancer (PCa) is one of the most common cancers in male worldwide. Oxidative stress has been recognized as one of the driving signals pathologically linked to PCa progression. Nevertheless, the association of oxidative stress with PCa progression remains unclear.<h4>Methods</h4>Western blot, q-RT-PCR and bioinformatics analyses were used to examine PAGE4 expression. Comet assay and Annexin V/ PI dual staining assay were performed to investigate DNA damage and cell deat  ...[more]

Similar Datasets

| S-EPMC5116490 | biostudies-literature
| S-EPMC10973389 | biostudies-literature
| S-EPMC9135540 | biostudies-literature
2019-01-01 | GSE119005 | GEO
| S-EPMC5004077 | biostudies-literature
| S-EPMC6138697 | biostudies-literature
| S-EPMC5321575 | biostudies-literature
| S-EPMC4875509 | biostudies-literature
| S-EPMC8085840 | biostudies-literature
| S-EPMC8753901 | biostudies-literature