Unknown

Dataset Information

0

Oxidation resistance 1 regulates post-translational modifications of peroxiredoxin 2 in the cerebellum.


ABSTRACT: Protein aggregation, oxidative and nitrosative stress are etiological factors common to all major neurodegenerative disorders. Therefore, identifying proteins that function at the crossroads of these essential pathways may provide novel targets for therapy. Oxidation resistance 1 (Oxr1) is a protein proven to be neuroprotective against oxidative stress, although the molecular mechanisms involved remain unclear. Here, we demonstrate that Oxr1 interacts with the multifunctional protein, peroxiredoxin 2 (Prdx2), a potent antioxidant enzyme highly expressed in the brain that can also act as a molecular chaperone. Using a combination of in vitro assays and two animal models, we discovered that expression levels of Oxr1 regulate the degree of oligomerization of Prdx2 and also its post-translational modifications (PTMs), specifically suggesting that Oxr1 acts as a functional switch between the antioxidant and chaperone functions of Prdx2. Furthermore, we showed in the Oxr1 knockout mouse that Prdx2 is aberrantly modified by overoxidation and S-nitrosylation in the cerebellum at the presymptomatic stage; this in-turn affected the oligomerization of Prdx2, potentially impeding its normal functions and contributing to the specific cerebellar neurodegeneration in this mouse model.

SUBMITTER: Svistunova DM 

PROVIDER: S-EPMC6339520 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Oxidation resistance 1 regulates post-translational modifications of peroxiredoxin 2 in the cerebellum.

Svistunova Daria M DM   Simon Jillian N JN   Rembeza Elzbieta E   Crabtree Mark M   Yue Wyatt W WW   Oliver Peter L PL   Finelli Mattéa J MJ  

Free radical biology & medicine 20181031


Protein aggregation, oxidative and nitrosative stress are etiological factors common to all major neurodegenerative disorders. Therefore, identifying proteins that function at the crossroads of these essential pathways may provide novel targets for therapy. Oxidation resistance 1 (Oxr1) is a protein proven to be neuroprotective against oxidative stress, although the molecular mechanisms involved remain unclear. Here, we demonstrate that Oxr1 interacts with the multifunctional protein, peroxiredo  ...[more]

Similar Datasets

| S-EPMC4905368 | biostudies-other
| S-EPMC8392720 | biostudies-literature
| S-EPMC10744910 | biostudies-literature
| S-EPMC2951466 | biostudies-literature
| S-EPMC8652059 | biostudies-literature
| S-EPMC9090595 | biostudies-literature
| S-EPMC7051976 | biostudies-literature
| S-EPMC7435879 | biostudies-literature
| S-EPMC3499978 | biostudies-literature
| S-EPMC7323054 | biostudies-literature