Unknown

Dataset Information

0

Ca2+-dependent calmodulin binding to cardiac ryanodine receptor (RyR2) calmodulin-binding domains.


ABSTRACT: The Ca2+ sensor calmodulin (CaM) regulates cardiac ryanodine receptor (RyR2)-mediated Ca2+ release from the sarcoplasmic reticulum. CaM inhibits RyR2 in a Ca2+-dependent manner and aberrant CaM-dependent inhibition results in life-threatening cardiac arrhythmias. However, the molecular details of the CaM-RyR2 interaction remain unclear. Four CaM-binding domains (CaMBD1a, -1b, -2, and -3) in RyR2 have been proposed. Here, we investigated the Ca2+-dependent interactions between CaM and these CaMBDs by monitoring changes in the fluorescence anisotropy of carboxytetramethylrhodamine (TAMRA)-labeled CaMBD peptides during titration with CaM at a wide range of Ca2+ concentrations. We showed that CaM bound to all four CaMBDs with affinities that increased with Ca2+ concentration. CaM bound to CaMBD2 and -3 with high affinities across all Ca2+ concentrations tested, but bound to CaMBD1a and -1b only at Ca2+ concentrations above 0.2?µM. Binding experiments using individual CaM domains revealed that the CaM C-domain preferentially bound to CaMBD2, and the N-domain to CaMBD3. Moreover, the Ca2+ affinity of the CaM C-domain in complex with CaMBD2 or -3 was so high that these complexes are essentially Ca2+ saturated under resting Ca2+ conditions. Conversely, the N-domain senses Ca2+ exactly in the transition from resting to activating Ca2+ when complexed to either CaMBD2 or -3. Altogether, our results support a binding model where the CaM C-domain is anchored to RyR2 CaMBD2 and saturated with Ca2+ during Ca2+ oscillations, while the CaM N-domain functions as a dynamic Ca2+ sensor that can bridge noncontiguous regions of RyR2 or clamp down onto CaMBD2.

SUBMITTER: Brohus M 

PROVIDER: S-EPMC6340113 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ca<sup>2+</sup>-dependent calmodulin binding to cardiac ryanodine receptor (RyR2) calmodulin-binding domains.

Brohus Malene M   Søndergaard Mads T MT   Wayne Chen Sui Rong SR   van Petegem Filip F   Overgaard Michael T MT  

The Biochemical journal 20190118 2


The Ca<sup>2+</sup> sensor calmodulin (CaM) regulates cardiac ryanodine receptor (RyR2)-mediated Ca<sup>2+</sup> release from the sarcoplasmic reticulum. CaM inhibits RyR2 in a Ca<sup>2+</sup>-dependent manner and aberrant CaM-dependent inhibition results in life-threatening cardiac arrhythmias. However, the molecular details of the CaM-RyR2 interaction remain unclear. Four CaM-binding domains (CaMBD1a, -1b, -2, and -3) in RyR2 have been proposed. Here, we investigated the Ca<sup>2+</sup>-depend  ...[more]

Similar Datasets

| S-EPMC8211408 | biostudies-literature
| S-EPMC5270481 | biostudies-literature
2020-10-07 | GSE158536 | GEO
| S-EPMC6245731 | biostudies-literature
| S-EPMC3025723 | biostudies-literature
| S-EPMC7691336 | biostudies-literature
| S-EPMC3436284 | biostudies-literature
| S-EPMC9720719 | biostudies-literature
| S-EPMC6402808 | biostudies-literature
| S-EPMC7462902 | biostudies-literature