Unknown

Dataset Information

0

Geometric Determinants of In-Situ Direct Laser Writing.


ABSTRACT: Direct laser writing (DLW) is a three-dimensional (3D) manufacturing technology that offers significant geometric versatility at submicron length scales. Although these characteristics hold promise for fields including organ modeling and microfluidic processing, difficulties associated with facilitating the macro-to-micro interfaces required for fluid delivery have limited the utility of DLW for such applications. To overcome this issue, here we report an in-situ DLW (isDLW) strategy for creating 3D nanostructured features directly inside of-and notably, fully sealed to-sol-gel-coated elastomeric microchannels. In particular, we investigate the role of microchannel geometry (e.g., cross-sectional shape and size) in the sealing performance of isDLW-printed structures. Experiments revealed that increasing the outward tapering of microchannel sidewalls improved fluidic sealing integrity for channel heights ranging from 10 ?m to 100 ?m, which suggests that conventional microchannel fabrication approaches are poorly suited for isDLW. As a demonstrative example, we employed isDLW to 3D print a microfluidic helical coil spring diode and observed improved flow rectification performance at higher pressures-an indication of effective structure-to-channel sealing. We envision that the ability to readily integrate 3D nanostructured fluidic motifs with the entire luminal surface of elastomeric channels will open new avenues for emerging applications in areas such as soft microrobotics and biofluidic microsystems.

SUBMITTER: Lamont AC 

PROVIDER: S-EPMC6344532 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Geometric Determinants of In-Situ Direct Laser Writing.

Lamont Andrew C AC   Alsharhan Abdullah T AT   Sochol Ryan D RD  

Scientific reports 20190123 1


Direct laser writing (DLW) is a three-dimensional (3D) manufacturing technology that offers significant geometric versatility at submicron length scales. Although these characteristics hold promise for fields including organ modeling and microfluidic processing, difficulties associated with facilitating the macro-to-micro interfaces required for fluid delivery have limited the utility of DLW for such applications. To overcome this issue, here we report an in-situ DLW (isDLW) strategy for creatin  ...[more]

Similar Datasets

| S-EPMC8155204 | biostudies-literature
| S-EPMC9413988 | biostudies-literature
| S-EPMC8444305 | biostudies-literature
| S-EPMC6107297 | biostudies-literature
| S-EPMC5171911 | biostudies-literature
| S-EPMC10276853 | biostudies-literature
| S-EPMC7000703 | biostudies-literature
| S-EPMC7713360 | biostudies-literature
| S-EPMC5595358 | biostudies-literature
| S-EPMC5762700 | biostudies-literature