Gas-Phase Ion/Ion Chemistry as a Probe for the Presence of Carboxylate Groups in Polypeptide Cations.
Ontology highlight
ABSTRACT: The reactivity of 1-hydroxybenzoyl triazole (HOBt) esters with the carboxylate functionality present in peptides is demonstrated in the gas phase with a doubly deprotonated dianion. The reaction forms an anhydride linkage at the carboxylate site. Upon ion trap collisional-induced dissociation (CID) of the modified peptide, the resulting spectrum shows a nominal loss of the mass of the reagent and a water molecule. Analogous phenomenology was also noted for model peptide cations that likely contain zwitterionic/salt-bridged motifs in reactions with a negatively charged HOBt ester. Control experiments indicate that a carboxylate group is the likely reactive site, rather than other possible nucleophilic sites present in the peptide. These observations suggest that HOBt ester chemistry may be used as a chemical probe for the presence and location of carboxylate groups in net positively charged polypeptide ions. As an illustration, deprotonated sulfobenzoyl HOBt was reacted with the [M+7H]7+ ion of ubiquitin. The ion was shown to react with the reagent and CID of the covalent reaction product yielded an abundant [M+6H-H2O]6+ ion. Comparison of the CID product ion spectrum of this ion with that of the water loss product generated from CID of the unmodified [M+6H]6+ ion revealed the glutamic acid at residue 64 as a reactive site, suggesting that it is present in the deprotonated form. Graphical Abstract ?.
SUBMITTER: Pitts-McCoy AM
PROVIDER: S-EPMC6347497 | biostudies-literature | 2019 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA