Project description:Primary dystonia is usually of adult onset, can be familial, and frequently involves the cervical musculature. Our goal was to identify the causal mutation in a family with adult onset, primary cervical dystonia.Linkage and haplotype analyses were combined with solution-based whole-exome capture and massively parallel sequencing in a large Caucasian pedigree with adult onset, primary cervical dystonia to identify a cosegregating mutation. High-throughput screening and Sanger sequencing were completed in 308 Caucasians with familial or sporadic adult onset cervical dystonia and matching controls for sequence variants in this mutant gene.Exome sequencing led to the identification of an exonic splicing enhancer mutation in exon 7 of CIZ1 (c.790A>G, p.S264G), which encodes CIZ1, Cip1-interacting zinc finger protein 1. CIZ1 is a p21(Cip1/Waf1) -interacting zinc finger protein expressed in brain and involved in DNA synthesis and cell-cycle control. Using a minigene assay, we showed that c.790A>G altered CIZ1 splicing patterns. The p.S264G mutation also altered the nuclear localization of CIZ1. Screening in subjects with adult-onset cervical dystonia identified 2 additional CIZ1 missense mutations (p.P47S and p.R672M).Mutations in CIZ1 may cause adult onset, primary cervical dystonia, possibly by precipitating neurodevelopmental abnormalities that manifest in adults and/or G1/S cell-cycle dysregulation in the mature central nervous system.
Project description:BackgroundThe clinical phenotype of DYT6 consists mainly of primary craniocervical dystonia. Recently, the THAP1 gene was identified as the cause of DYT6, where a total of 13 mutations have been identified in Amish-Mennonite and European families.MethodsWe sequenced the THAP1 gene in a series of 362 British, genetically undetermined, primary dystonia patients (78 with focal, 186 with segmental, and 98 with generalized dystonia) and in 28 dystonia-manifesting DYT1 patients and 176 normal control individuals.ResultsNine coding mutations were identified in the THAP1 gene. Two were small deletions, 2 were nonsense, and 5 were missense. Eight mutations were heterozygous, and 1 was homozygous. The main clinical presentation of cases with THAP1 mutations was early-onset (<30 years) dystonia in the craniocervical region or the limbs (8 of 9 patients). There was phenotypic variability with laryngeal or oromandibular dystonia present in 3 cases. Four of 9 THAP1 cases developed generalized dystonia.ConclusionsThe number of THAP1 mutations has been significantly expanded, indicating an uncommon but important cause of dystonia. Coding mutations account for 9 of 362 dystonia cases, indicating a mutation frequency of 2.5% of dystonia cases in the population that we have screened. The majority of cases reported here with THAP1 mutations had craniocervical- or limb-onset segmental dystonia, but we also identified 1 homozygous THAP1 mutation, associated initially with writer's dystonia and then developing segmental dystonia. Three of our patients had a nonsense or frameshift THAP1 mutation and the clinical features of laryngeal or oromandibular dystonia. These data suggest that early-onset dystonia that includes the involvement of the larynx or face is frequently associated with THAP1 mutations.
Project description:Although manganese is an essential trace metal, little is known about its transport and homeostatic regulation. Here we have identified a cohort of patients with a novel autosomal recessive manganese transporter defect caused by mutations in SLC39A14. Excessive accumulation of manganese in these patients results in rapidly progressive childhood-onset parkinsonism-dystonia with distinctive brain magnetic resonance imaging appearances and neurodegenerative features on post-mortem examination. We show that mutations in SLC39A14 impair manganese transport in vitro and lead to manganese dyshomeostasis and altered locomotor activity in zebrafish with CRISPR-induced slc39a14 null mutations. Chelation with disodium calcium edetate lowers blood manganese levels in patients and can lead to striking clinical improvement. Our results demonstrate that SLC39A14 functions as a pivotal manganese transporter in vertebrates.
Project description:BackgroundThough uncommon, primary movement disorders can occur in pregnancy, the most common being restless legs syndrome and chorea gravidarum [1]. New onset dystonia in pregnancy has been reported four times previously with a resolution of symptoms within six months of delivery [2345]. Exacerbation of pre-existing movement disorders and the onset of de novo movement disorders during pregnancy support the hypothesis that female sex hormones play an important role in the regulation of basal ganglia circuitry.Case reportHere we describe a case of new-onset cervical dystonia during pregnancy with persistence of symptoms after delivery.DiscussionThe phenotypic overlap between this case and previously reported cases further establishes dystonia gravidarum as a distinct clinical entity.
Project description:Isolated dystonia is a disorder characterized by involuntary twisting postures arising from sustained muscle contractions. Although autosomal-dominant mutations in TOR1A, THAP1, and GNAL have been found in some cases, the molecular mechanisms underlying isolated dystonia are largely unknown. In addition, although emphasis has been placed on dominant isolated dystonia, the disorder is also transmitted as a recessive trait, for which no mutations have been defined. Using whole-exome sequencing in a recessive isolated dystonia-affected kindred, we identified disease-segregating compound heterozygous mutations in COL6A3, a collagen VI gene associated previously with muscular dystrophy. Genetic screening of a further 367 isolated dystonia subjects revealed two additional recessive pedigrees harboring compound heterozygous mutations in COL6A3. Strikingly, all affected individuals had at least one pathogenic allele in exon 41, including an exon-skipping mutation that induced an in-frame deletion. We tested the hypothesis that disruption of this exon is pathognomonic for isolated dystonia by inducing a series of in-frame deletions in zebrafish embryos. Consistent with our human genetics data, suppression of the exon 41 ortholog caused deficits in axonal outgrowth, whereas suppression of other exons phenocopied collagen deposition mutants. All recessive mutation carriers demonstrated early-onset segmental isolated dystonia without muscular disease. Finally, we show that Col6a3 is expressed in neurons, with relevant mRNA levels detectable throughout the adult mouse brain. Taken together, our data indicate that loss-of-function mutations affecting a specific region of COL6A3 cause recessive isolated dystonia with underlying neurodevelopmental deficits and highlight the brain extracellular matrix as a contributor to dystonia pathogenesis.
Project description:Mitochondrial fatty acid synthesis (mtFAS) is an evolutionarily conserved pathway essential for the function of the respiratory chain and several mitochondrial enzyme complexes. We report here a unique neurometabolic human disorder caused by defective mtFAS. Seven individuals from five unrelated families presented with childhood-onset dystonia, optic atrophy, and basal ganglia signal abnormalities on MRI. All affected individuals were found to harbor recessive mutations in MECR encoding the mitochondrial trans-2-enoyl-coenzyme A-reductase involved in human mtFAS. All six mutations are extremely rare in the general population, segregate with the disease in the families, and are predicted to be deleterious. The nonsense c.855T>G (p.Tyr285∗), c.247_250del (p.Asn83Hisfs∗4), and splice site c.830+2_830+3insT mutations lead to C-terminal truncation variants of MECR. The missense c.695G>A (p.Gly232Glu), c.854A>G (p.Tyr285Cys), and c.772C>T (p.Arg258Trp) mutations involve conserved amino acid residues, are located within the cofactor binding domain, and are predicted by structural analysis to have a destabilizing effect. Yeast modeling and complementation studies validated the pathogenicity of the MECR mutations. Fibroblast cell lines from affected individuals displayed reduced levels of both MECR and lipoylated proteins as well as defective respiration. These results suggest that mutations in MECR cause a distinct human disorder of the mtFAS pathway. The observation of decreased lipoylation raises the possibility of a potential therapeutic strategy.
Project description:The aetiology of dystonia disorders is complex, and next-generation sequencing has become a useful tool in elucidating the variable genetic background of these diseases. Here we report a deleterious heterozygous truncating variant in the inosine monophosphate dehydrogenase gene (IMPDH2) by whole-exome sequencing, co-segregating with a dominantly inherited dystonia-tremor disease in a large Finnish family. We show that the defect results in degradation of the gene product, causing IMPDH2 deficiency in patient cells. IMPDH2 is the first and rate-limiting enzyme in the de novo biosynthesis of guanine nucleotides, a dopamine synthetic pathway previously linked to childhood or adolescence-onset dystonia disorders. We report IMPDH2 as a new gene to the dystonia disease entity. The evidence underlines the important link between guanine metabolism, dopamine biosynthesis and dystonia.