Project description:Vincristine is an effective chemotherapeutic drug for various cancers, including acute lymphoblastic leukemia (ALL). Unfortunately, clinical utility is restricted by dose-limiting vincristine-induced peripheral neuropathies (VIPN). We sought to determine the association of VIPN with a recently identified risk variant, CEP72 rs924607, and drug absorption, distribution, metabolism, and excretion (ADME) gene variants in pediatric ALL. This was followed by a meta-analysis of pharmacogenomic data from over 500 patients. CEP72 rs924607 was significantly associated with VIPN (P = 0.02; odds ratio (OR) = 3.4). ADME analyses identified associations between VIPN and ABCC1 rs3784867 (P = 5.34 × 10-5 ; OR = 4.9), and SLC5A7 rs1013940 (P = 9.00 × 10-4 ; OR= 8.6); genes involved in vincristine transport and inherited neuropathies, respectively. Meta-analysis identified an association with a variant related to TTPA (rs10504361: P = 6.85 × 10-4 ; OR = 2.0), a heritable neuropathy-related gene. This study provides essential corroboratory evidence for CEP72 rs924607 and highlights the importance of drug transporter and inherited neuropathy genes in VIPN.
Project description:Vincristine-induced peripheral neuropathy (VIPN) is a debilitating side-effect of vincristine. It remains a challenge to predict which patients will suffer from VIPN. Pharmacogenomics may explain an individuals' susceptibility to side-effects. In this systematic review and meta-analysis, we describe the influence of pharmacogenomic parameters on the development of VIPN in children with cancer. PubMed, Embase and Web of Science were searched. In total, 1597 records were identified and 21 studies were included. A random-effects meta-analysis was performed for the influence of CYP3A5 expression on the development of VIPN. Single-nucleotide polymorphisms (SNPs) in transporter-, metabolism-, cytoskeleton-, and hereditary neuropathy-associated genes and SNPs in genes previously unrelated to vincristine or neuropathy were associated with VIPN. CYP3A5 expression status was not significantly associated with VIPN. The comparison and interpretation of the results of the included studies was limited due to heterogeneity in the study population, treatment protocol and assessment methods and definitions of VIPN. Independent replication is essential to validate the clinical significance of the reported associations. Future research should aim for prospective VIPN assessment in both a discovery and a replication cohort. Ultimately, the goal would be to screen patients upfront to determine optimal vincristine dosage with regards to efficacy and risk of VIPN.
Project description:Vincristine is a chemotherapeutic agent that is a component of many combination regimens for a variety of malignancies, including several common pediatric tumors. Vincristine treatment is limited by a progressive sensorimotor peripheral neuropathy. Vincristine-induced peripheral neuropathy (VIPN) is particularly challenging to detect and monitor in pediatric patients, in whom the side effect can diminish long term quality of life. This review summarizes the current state of knowledge regarding VIPN, focusing on its description, assessment, prediction, prevention, and treatment. Significant progress has been made in our knowledge about VIPN incidence and progression, and tools have been developed that enable clinicians to reliably measure VIPN in pediatric patients. Despite these successes, little progress has been made in identifying clinically useful predictors of VIPN or in developing effective approaches for VIPN prevention or treatment in either pediatric or adult patients. Further research is needed to predict, prevent, and treat VIPN to maximize therapeutic benefit and avoid unnecessary toxicity from vincristine treatment.
Project description:Childhood acute lymphoblastic leukemia (ALL) is a significant clinical problem that can be effectively treated with vincristine, a vinca alkaloid-based chemotherapeutic agent. However, nearly all children receiving vincristine treatment develop vincristine-induced peripheral neuropathy (VIPN). The impact of adolescent vincristine treatment across the lifespan remains poorly understood. We, consequently, developed an adolescent rodent model of VIPN which can be utilized to study possible long term consequences of vincristine treatment in the developing rat. We also evaluated the therapeutic efficacy of voluntary exercise and potential impact of obesity as a genetic risk factor in this model on the development and maintenance of VIPN. Out of all the dosing regimens we evaluated, the most potent VIPN was produced by fifteen consecutive daily intraperitoneal (i.p.) vincristine injections at 100 µg/kg/day, throughout the critical period of adolescence from postnatal day 35 to 49. With this treatment, vincristine-treated animals developed hypersensitivity to mechanical and cold stimulation of the plantar hind paw surface, which outlasted the period of vincristine treatment and resolved within two weeks following the cessation of vincristine injection. By contrast, impairment in grip strength gain was delayed by vincristine treatment, emerging shortly following the termination of vincristine dosing, and persisted into early adulthood without diminishing. Interestingly, voluntary wheel running exercise prevented the development of vincristine-induced hypersensitivities to mechanical and cold stimulation. However, Zucker fa/fa obese animals did not exhibit higher risk of developing VIPN compared to lean rats. Our studies identify sensory and motor impairments produced by vincristine in adolescent animals and support the therapeutic efficacy of voluntary exercise for suppressing VIPN in developing rats.
Project description:Vincristine (VCR) is an important component of curative chemotherapy for many childhood cancers. Its main side effect is VCR-induced peripheral neuropathy (VIPN), a dose limiting toxicity. Some children are more susceptible to VIPN, which is at least partially dependent on genetic factors and pharmacokinetics (PK). In this study, we identify and replicate genetic variants associated with VCR PK and VIPN. Patient samples from a randomized clinical trial studying the effect of administration duration of VCR on VIPN in 90 patients were used. PK sampling was conducted on between one and five occasions at multiple time points. A linear two-compartment model with first-order elimination was used, and targeted next-generation DNA sequencing was performed. Genotype-trait associations were analyzed using mixed-effect models or logistic regression analysis for repeated measures, or Poisson regression analysis in which the highest VIPN score per patient was included. Nine single-nucleotide polymorphisms (SNPs) in seven genes (NDRG1, GARS, FIG4, FGD4, SEPTIN9, CEP72, and ETAA1) were associated with VIPN. Furthermore, three SNPs in three genes (MTNR1B, RAB7A and SNU13) were associated with PK of VCR. In conclusion, PK of VCR and VIPN are influenced by SNPs; upfront identification of those that lead to an altered susceptibility to VIPN or VCR exposure could help individualize VCR treatment.
Project description:Vincristine is a core chemotherapeutic drug administered to pediatric acute lymphoblastic leukemia patients. Despite its efficacy in treating leukemia, it can lead to severe peripheral neuropathy in a subgroup of the patients. Peripheral neuropathy is a debilitating and painful side-effect that can severely impact an individual's quality of life. Currently, there are no established predictors of peripheral neuropathy incidence during the early stage of chemotherapeutic treatment. As a result, patients who are not susceptible to peripheral neuropathy may receive sub-therapeutic treatment due to an empirical upper cap on the dose, while others may experience severe neuropathy at the same dose. Contrary to previous genomics based approaches, we employed a metabolomics approach to identify small sets of metabolites that can be used to predict a patient's susceptibility to peripheral neuropathy at different time points during the treatment. Using those identified metabolites, we developed a novel strategy to predict peripheral neuropathy and subsequently adjust the vincristine dose accordingly. In accordance with this novel strategy, we created a free user-friendly tool, VIPNp, for physicians to easily implement our prediction strategy. Our results showed that focusing on metabolites, which encompasses both genotypic and phenotypic variations, can enable early prediction of peripheral neuropathy in pediatric leukemia patients.
Project description:Peripheral polyneuropathy is a common and dose-limiting side effect of many important chemotherapeutic agents. Most such neuropathies are characterized by early axonal degeneration, yet therapies that inhibit this axonal destruction process do not currently exist. Recently, we and others discovered that genetic deletion of SARM1 (sterile alpha and TIR motif containing protein 1) dramatically protects axons from degeneration after axotomy in mice. This finding fuels hope that inhibition of SARM1 or its downstream components can be used therapeutically in patients threatened by axonal loss. However, axon loss in most neuropathies, including chemotherapy-induced peripheral neuropathy, is the result of subacute/chronic processes that may be regulated differently than the acute, one time insult of axotomy. Here we evaluate if genetic deletion of SARM1 decreases axonal degeneration in a mouse model of neuropathy induced by the chemotherapeutic agent vincristine. In wild-type mice, 4 weeks of twice-weekly intraperitoneal injections of 1.5 mg/kg vincristine cause pronounced mechanical and heat hyperalgesia, a significant decrease in tail compound nerve action potential amplitude, loss of intraepidermal nerve fibres and significant degeneration of myelinated axons in both the distal sural nerve and nerves of the toe. Neither the proximal sural nerve nor the motor tibial nerve exhibit axon loss. These findings are consistent with the development of a distal, sensory predominant axonal polyneuropathy that mimics vincristine-induced peripheral polyneuropathy in humans. Using the same regimen of vincristine treatment in SARM1 knockout mice, the development of mechanical and heat hyperalgesia is blocked and the loss in tail compound nerve action potential amplitude is prevented. Moreover, SARM1 knockout mice do not lose unmyelinated fibres in the skin or myelinated axons in the sural nerve and toe after vincristine. Hence, genetic deletion of SARM1 blocks the development of vincristine-induced peripheral polyneuropathy in mice. Our results reveal that subacute/chronic axon loss induced by vincristine occurs via a SARM1 mediated axonal destruction pathway, and that blocking this pathway prevents the development of vincristine-induced peripheral polyneuropathy. These findings, in conjunction with previous studies with axotomy and traumatic brain injury, establish SARM1 as the central determinant of a fundamental axonal degeneration pathway that is activated by diverse insults. We suggest that targeting SARM1 or its downstream effectors may be a viable therapeutic option to prevent vincristine-induced peripheral polyneuropathy and possibly other peripheral polyneuropathies.
Project description:Vincristine-induced peripheral neuropathy (VIPN) is the main side effect and major reason for neuropathic pain in cancer survivors treated with vincristine. Vincristine, a chemotherapeutic antimitotic drug, is used frequently in combination chemotherapy. The primary purpose of the current study was to assess the protective effect of sodium selenite (SSe) on VIPN in vitro. Cytotoxicity effects of vincristine were evaluated using PC12 cells as a neuronal model. The cell culture studies were conducted in three groups based on the various treatments, including vincristine, SSe, and co-exposure to both compositions. Cell viability and cell cycle analyses were performed using MTT assay and flow cytometry, respectively. The level of mRNA expression of Bax and Bcl-2 was determined using qRT-PCR. According to the results, vincristine decreased the survival rate of PC12 cells. After 24 and 48 h exposure to different concentrations of vincristine (0.1-20 μΜ), the survival rate of PC12 cells decreased as compared to the control group. The results showed that treatment with 5 μΜ of vincristine resulted in apoptosis of PC12 cells. Interestingly,co-incubation of these cells with SSe significantly reduced the cell damage induced by vincristine. Furthermore, vincristine induced the inhibition of the G2 phase in PC 12 cells, and using SSe in combination with vincristine eliminated the inhibition of the cell cycle in the G2 phase. Briefly, our in vitro preliminary study showed that SSe might protect PC12 cells from vincristine-induced peripheral neuropathy during chemotherapy.
Project description:PurposeCisplatin is a critical component of first-line chemotherapy for several cancers, but causes peripheral sensory neuropathy, hearing loss, and tinnitus. We aimed to identify comorbidities for cisplatin-induced neurotoxicities among large numbers of similarly treated patients without the confounding effect of cranial radiotherapy.MethodsUtilizing linear and logistic regression analyses on 1680 well-characterized cisplatin-treated testicular cancer survivors, we analyzed associations of hearing loss, tinnitus, and peripheral neuropathy with nongenetic comorbidities. Genome-wide association studies and gene-based analyses were performed on each phenotype.ResultsHearing loss, tinnitus, and peripheral neuropathy, accounting for age and cisplatin dose, were interdependent. Survivors with these neurotoxicities experienced more hypertension and poorer self-reported health. In addition, hearing loss was positively associated with BMIs at clinical evaluation and nonwork-related noise exposure (>5 h/week). Tinnitus was positively associated with tobacco use, hypercholesterolemia, and noise exposure. We observed positive associations between peripheral neuropathy and persistent vertigo, tobacco use, and excess alcohol consumption. Hearing loss and TXNRD1, which plays a key role in redox regulation, showed borderline significance (p = 4.2 × 10-6 ) in gene-based analysis. rs62283056 in WFS1 previously found to be significantly associated with hearing loss (n = 511), was marginally significant in an independent replication cohort (p = 0.06; n = 606). Gene-based analyses identified significant associations between tinnitus and WNT8A (p = 2.5 × 10-6 ), encoding a signaling protein important in germ cell tumors.ConclusionsGenetics variants in TXNRD1 and WNT8A are notable risk factors for hearing loss and tinnitus, respectively. Future studies should investigate these genes and if replicated, identify their potential impact on preventive strategies.
Project description:PurposeThe aims were to evaluate the construct validity and reliability of the Dutch version of the pediatric-modified Total Neuropathy Score (ped-mTNS) for assessing vincristine-induced peripheral neuropathy (VIPN) in Dutch pediatric oncology patients aged 5-18 years.MethodsConstruct validity (primary aim) of the ped-mTNS was determined by testing hypotheses about expected correlation between scores of the ped-mTNS (range: 0-32) and the Common Terminology Criteria for Adverse Events (CTCAE) (range: 0-18) for patients and healthy controls and by comparing patients and controls regarding their total ped-mTNS scores and the proportion of children identified with VIPN. Inter-rater and intra-rater reliability and measurement error (secondary aims) were assessed in a subgroup of study participants.ResultsAmong the 112 children (56 patients and 56 age- and gender-matched healthy controls) evaluated, correlation between CTCAE and ped-mTNS scores was as expected (moderate (r = 0.60)). Moreover, as expected, patients had significantly higher ped-mTNS scores and more frequent symptoms of VIPN compared with controls (both p < .001). Reliability as measured within the intra-rater group (n = 10) (intra-class correlation coefficient (ICCagreement) = 0.64, standard error of measurement (SEMagreement) = 2.92, and smallest detectable change (SDCagreement) = 8.1) and within the inter-rater subgroup (n = 10) (ICCagreement = 0.63, SEMagreement = 3.7, and SDCagreement = 10.26) indicates insufficient reliability.ConclusionThe Dutch version of the ped-mTNS appears to have good construct validity for assessing VIPN in a Dutch pediatric oncology population, whereas reliability appears to be insufficient and measurement error high. To improve standardization of VIPN assessment in children, future research aimed at evaluating and further optimizing the psychometric characteristics of the ped-mTNS is needed.