Unknown

Dataset Information

0

SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits.


ABSTRACT: Genetic manipulation of genes to upregulate specific branches of metabolic pathways is a method that is commonly used to improve fruit quality. However, the use of a single gene to impact several metabolic pathways is difficult. Here, we show that overexpression of the single gene SlMYB75 (SlMYB75-OE) is effective at improving multiple fruit quality traits. In these engineered fruits, the anthocyanin content reached 1.86?mg?g-1 fresh weight at the red-ripe stage, and these SlMYB75-OE tomatoes displayed a series of physiological changes, including delayed ripening and increased ethylene production. In addition to anthocyanin, the total contents of phenolics, flavonoids and soluble solids in SlMYB75-OE fruits were enhanced by 2.6, 4, and 1.2 times, respectively, compared to those of wild-type (WT) fruits. Interestingly, a number of aroma volatiles, such as aldehyde, phenylpropanoid-derived and terpene volatiles, were significantly increased in SlMYB75-OE fruits, with some terpene volatiles showing more than 10 times higher levels than those in WT fruits. Consistent with the metabolic assessment, transcriptomic profiling indicated that the genes involved in the ethylene signaling, phenylpropanoid and isoprenoid pathways were greatly upregulated in SlMYB75-OE fruits. Yeast one-hybrid and transactivation assays revealed that SlMYB75 is able to directly bind to the MYBPLANT and MYBPZM cis-regulatory elements and to activate the promoters of the LOXC, AADC2 and TPS genes. The identification of SlMYB75 as a key regulator of fruit quality attributes through the transcriptional regulation of downstream genes involved in several metabolic pathways opens new avenues towards engineering fruits with a higher sensory and nutritional quality.

SUBMITTER: Jian W 

PROVIDER: S-EPMC6355774 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits.

Jian Wei W   Cao Haohao H   Yuan Shu S   Liu Yudong Y   Lu Juanfang J   Lu Wang W   Li Ning N   Wang Jianhui J   Zou Jian J   Tang Ning N   Xu Chan C   Cheng Yulin Y   Gao Yanqiang Y   Xi Wanpeng W   Bouzayen Mondher M   Li Zhengguo Z  

Horticulture research 20190201


Genetic manipulation of genes to upregulate specific branches of metabolic pathways is a method that is commonly used to improve fruit quality. However, the use of a single gene to impact several metabolic pathways is difficult. Here, we show that overexpression of the single gene <i>SlMYB75</i> (<i>SlMYB75</i>-OE) is effective at improving multiple fruit quality traits. In these engineered fruits, the anthocyanin content reached 1.86 mg g<sup>-1</sup> fresh weight at the red-ripe stage, and the  ...[more]

Similar Datasets

| S-EPMC7747991 | biostudies-literature
| S-EPMC5103220 | biostudies-literature
| S-EPMC10026432 | biostudies-literature
| S-EPMC9329794 | biostudies-literature
| S-EPMC7855179 | biostudies-literature
| S-EPMC5073212 | biostudies-literature
| S-EPMC8621488 | biostudies-literature
| S-EPMC6953192 | biostudies-literature
| S-EPMC7237480 | biostudies-literature
| S-EPMC10706590 | biostudies-literature