PDCD4 Is an Androgen-Repressed Tumor Suppressor that Regulates Prostate Cancer Growth and Castration Resistance.
Ontology highlight
ABSTRACT: Androgen receptor (AR) transcriptional activity contributes to prostate cancer development and castration resistance. The growth and survival pathways driven by AR remain incompletely defined. Here, we found PDCD4 to be a new target of AR signaling and a potent regulator of prostate cancer cell growth, survival, and castration resistance. The 3' untranslated region of PDCD4 is directly targeted by the androgen-induced miRNA, miR-21. Androgen treatment suppressed PDCD4 expression in a dose responsive and miR-21-dependent manner. Correspondingly, AR inhibition dose-responsively induced PDCD4 expression. Using data from prostate cancer tissue samples in The Cancer Genome Atlas (TCGA), we found a significant and inverse correlation between miR-21 and PDCD4 mRNA and protein levels. Higher Gleason grade tumors exhibited significantly higher levels of miR-21 and significantly lower levels of PDCD4 mRNA and protein. PDCD4 knockdown enhanced androgen-dependent cell proliferation and cell-cycle progression, inhibited apoptosis, and was sufficient to drive androgen-independent growth. On the other hand, PDCD4 overexpression inhibited miR-21-mediated growth and androgen independence. The stable knockdown of PDCD4 in androgen-dependent prostate cancer cells enhanced subcutaneous tumor take rate in vivo, accelerated tumor growth, and was sufficient for castration-resistant tumor growth. IMPLICATIONS: This study provides the first evidence that PDCD4 is an androgen-suppressed protein capable of regulating prostate cancer cell proliferation, apoptosis, and castration resistance. These results uncover miR-21 and PDCD4-regulated pathways as potential new targets for castration-resistant prostate cancer.
SUBMITTER: Zennami K
PROVIDER: S-EPMC6359980 | biostudies-literature | 2019 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA