Unknown

Dataset Information

0

Cryo-EM structure of the human ?1?3?2 GABAA receptor in a lipid bilayer.


ABSTRACT: Type A ?-aminobutyric acid (GABAA) receptors are pentameric ligand-gated ion channels and the main drivers of fast inhibitory neurotransmission in the vertebrate nervous system1,2. Their dysfunction is implicated in a range of neurological disorders, including depression, epilepsy and schizophrenia3,4. Among the numerous assemblies that are theoretically possible, the most prevalent in the brain are the ?1?2/3?2 GABAA receptors5. The ?3 subunit has an important role in maintaining inhibitory tone, and the expression of this subunit alone is sufficient to rescue inhibitory synaptic transmission in ?1-?3 triple knockout neurons6. So far, efforts to generate accurate structural models for heteromeric GABAA receptors have been hampered by the use of engineered receptors and the presence of detergents7-9. Notably, some recent cryo-electron microscopy reconstructions have reported 'collapsed' conformations8,9; however, these disagree with the structure of the prototypical pentameric ligand-gated ion channel the Torpedo nicotinic acetylcholine receptor10,11, the large body of structural work on homologous homopentameric receptor variants12 and the logic of an ion-channel architecture. Here we present a high-resolution cryo-electron microscopy structure of the full-length human ?1?3?2L-a major synaptic GABAA receptor isoform-that is functionally reconstituted in lipid nanodiscs. The receptor is bound to a positive allosteric modulator 'megabody' and is in a desensitized conformation. Each GABAA receptor pentamer contains two phosphatidylinositol-4,5-bisphosphate molecules, the head groups of which occupy positively charged pockets in the intracellular juxtamembrane regions of ?1 subunits. Beyond this level, the intracellular M3-M4 loops are largely disordered, possibly because interacting post-synaptic proteins are not present. This structure illustrates the molecular principles of heteromeric GABAA receptor organization and provides a reference framework for future mechanistic investigations of GABAergic signalling and pharmacology.

SUBMITTER: Laverty D 

PROVIDER: S-EPMC6364807 | biostudies-literature | 2019 Jan

REPOSITORIES: biostudies-literature

Similar Datasets

| EMPIAR-11255 | biostudies-other
| S-EPMC6123483 | biostudies-literature
| S-EPMC8149723 | biostudies-literature
| S-EPMC7343782 | biostudies-literature
| S-EPMC10550821 | biostudies-literature