Unknown

Dataset Information

0

MiPIE: NGS-based Prediction of miRNA Using Integrated Evidence.


ABSTRACT: Methods for the de novo identification of microRNA (miRNA) have been developed using a range of sequence-based features. With the increasing availability of next generation sequencing (NGS) transcriptome data, there is a need for miRNA identification that integrates both NGS transcript expression-based patterns as well as advanced genomic sequence-based methods. While miRDeep2 does examine the predicted secondary structure of putative miRNA sequences, it does not leverage many of the sequence-based features used in state-of-the-art de novo methods. Meanwhile, other NGS-based methods, such as miRanalyzer, place an emphasis on sequence-based features without leveraging advanced expression-based features reflecting miRNA biosynthesis. This represents an opportunity to combine the strengths of NGS-based analysis with recent advances in de novo sequence-based miRNA prediction. We here develop a method, microRNA Prediction using Integrated Evidence (miPIE), which integrates both expression-based and sequence-based features to achieve significantly improved miRNA prediction performance. Feature selection identifies the 20 most discriminative features, 3 of which reflect strictly expression-based information. Evaluation using precision-recall curves, for six NGS data sets representing six diverse species, demonstrates substantial improvements in prediction performance compared to three methods: miRDeep2, miRanalyzer, and mirnovo. The individual contributions of expression-based and sequence-based features are also examined and we demonstrate that their combination is more effective than either alone.

SUBMITTER: Peace RJ 

PROVIDER: S-EPMC6367335 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

miPIE: NGS-based Prediction of miRNA Using Integrated Evidence.

Peace R J RJ   Sheikh Hassani M M   Green J R JR  

Scientific reports 20190207 1


Methods for the de novo identification of microRNA (miRNA) have been developed using a range of sequence-based features. With the increasing availability of next generation sequencing (NGS) transcriptome data, there is a need for miRNA identification that integrates both NGS transcript expression-based patterns as well as advanced genomic sequence-based methods. While miRDeep2 does examine the predicted secondary structure of putative miRNA sequences, it does not leverage many of the sequence-ba  ...[more]

Similar Datasets

| S-EPMC6657378 | biostudies-literature
| S-EPMC2447536 | biostudies-literature
2015-07-23 | PXD001976 | Pride
| S-EPMC4871368 | biostudies-literature
2019-05-31 | GSE117064 | GEO
| S-EPMC3617101 | biostudies-literature
2013-11-19 | E-GEOD-52450 | biostudies-arrayexpress
| S-EPMC11335555 | biostudies-literature
| S-EPMC10740754 | biostudies-literature
| PRJNA480974 | ENA