Unknown

Dataset Information

0

3' Branch ligation: a novel method to ligate non-complementary DNA to recessed or internal 3'OH ends in DNA or RNA.


ABSTRACT: Nucleic acid ligases are crucial enzymes that repair breaks in DNA or RNA during synthesis, repair and recombination. Various genomic tools have been developed using the diverse activities of DNA/RNA ligases. Herein, we demonstrate a non-conventional ability of T4 DNA ligase to insert 5' phosphorylated blunt-end double-stranded DNA to DNA breaks at 3'-recessive ends, gaps, or nicks to form a Y-shaped 3'-branch structure. Therefore, this base pairing-independent ligation is termed 3'-branch ligation (3'BL). In an extensive study of optimal ligation conditions, the presence of 10% PEG-8000 in the ligation buffer significantly increased ligation efficiency to more than 80%. Ligation efficiency was slightly varied between different donor and acceptor sequences. More interestingly, we discovered that T4 DNA ligase efficiently ligated DNA to the 3'-recessed end of RNA, not to that of DNA, in a DNA/RNA hybrid, suggesting a ternary complex formation preference of T4 DNA ligase. These novel properties of T4 DNA ligase can be utilized as a broad molecular technique in many important genomic applications, such as 3'-end labelling by adding a universal sequence; directional tagmentation for NGS library construction that achieve theoretical 100% template usage; and targeted RNA NGS libraries with mitigated structure-based bias and adapter dimer problems.

SUBMITTER: Wang L 

PROVIDER: S-EPMC6379041 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

3' Branch ligation: a novel method to ligate non-complementary DNA to recessed or internal 3'OH ends in DNA or RNA.

Wang Lin L   Xi Yang Y   Zhang Wenwei W   Wang Weimao W   Shen Hanjie H   Wang Xiaojue X   Zhao Xia X   Alexeev Andrei A   Peters Brock A BA   Albert Alayna A   Xu Xu X   Ren Han H   Wang Ou O   Kirkconnell Killeen K   Perazich Helena H   Clark Sonya S   Hurowitz Evan E   Chen Ao A   Xu Xun X   Drmanac Radoje R   Jiang Yuan Y  

DNA research : an international journal for rapid publication of reports on genes and genomes 20190201 1


Nucleic acid ligases are crucial enzymes that repair breaks in DNA or RNA during synthesis, repair and recombination. Various genomic tools have been developed using the diverse activities of DNA/RNA ligases. Herein, we demonstrate a non-conventional ability of T4 DNA ligase to insert 5' phosphorylated blunt-end double-stranded DNA to DNA breaks at 3'-recessive ends, gaps, or nicks to form a Y-shaped 3'-branch structure. Therefore, this base pairing-independent ligation is termed 3'-branch ligat  ...[more]

Similar Datasets

| S-EPMC1852838 | biostudies-other
| S-EPMC3384673 | biostudies-literature
| S-EPMC3632120 | biostudies-literature
| S-EPMC6379666 | biostudies-literature
| S-EPMC3870732 | biostudies-literature
| S-EPMC9688845 | biostudies-literature
| S-EPMC4167330 | biostudies-literature
| S-EPMC3799452 | biostudies-literature
| S-EPMC4891662 | biostudies-other
| S-EPMC5494559 | biostudies-literature