Unknown

Dataset Information

0

The modular mechanism of chromocenter formation in Drosophila.


ABSTRACT: A central principle underlying the ubiquity and abundance of pericentromeric satellite DNA repeats in eukaryotes has remained poorly understood. Previously we proposed that the interchromosomal clustering of satellite DNAs into nuclear structures known as chromocenters ensures encapsulation of all chromosomes into a single nucleus (Jagannathan et al., 2018). Chromocenter disruption led to micronuclei formation, resulting in cell death. Here we show that chromocenter formation is mediated by a 'modular' network, where associations between two sequence-specific satellite DNA-binding proteins, D1 and Prod, bound to their cognate satellite DNAs, bring the full complement of chromosomes into the chromocenter. D1 prod double mutants die during embryogenesis, exhibiting enhanced phenotypes associated with chromocenter disruption, revealing the universal importance of satellite DNAs and chromocenters. Taken together, we propose that associations between chromocenter modules, consisting of satellite DNA binding proteins and their cognate satellite DNA, package the Drosophila genome within a single nucleus.

SUBMITTER: Jagannathan M 

PROVIDER: S-EPMC6382350 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

The modular mechanism of chromocenter formation in <i>Drosophila</i>.

Jagannathan Madhav M   Cummings Ryan R   Yamashita Yukiko M YM  

eLife 20190211


A central principle underlying the ubiquity and abundance of pericentromeric satellite DNA repeats in eukaryotes has remained poorly understood. Previously we proposed that the interchromosomal clustering of satellite DNAs into nuclear structures known as chromocenters ensures encapsulation of all chromosomes into a single nucleus (Jagannathan et al., 2018). Chromocenter disruption led to micronuclei formation, resulting in cell death. Here we show that chromocenter formation is mediated by a 'm  ...[more]

Similar Datasets

| S-EPMC4650735 | biostudies-literature
2024-06-22 | GSE233265 | GEO
| S-EPMC2586362 | biostudies-literature
2021-09-01 | ST001926 | MetabolomicsWorkbench
| S-EPMC8760934 | biostudies-literature
| S-EPMC10204057 | biostudies-literature
| S-EPMC3405054 | biostudies-literature
| S-EPMC2881763 | biostudies-literature
| S-EPMC4471547 | biostudies-literature
| S-EPMC4535664 | biostudies-literature