Unknown

Dataset Information

0

Accurate Protein-Folding Transition-Path Statistics from a Simple Free-Energy Landscape.


ABSTRACT: A central goal of protein-folding theory is to predict the stochastic dynamics of transition paths-the rare trajectories that transit between the folded and unfolded ensembles-using only thermodynamic information, such as a low-dimensional equilibrium free-energy landscape. However, commonly used one-dimensional landscapes typically fall short of this aim, because an empirical coordinate-dependent diffusion coefficient has to be fit to transition-path trajectory data in order to reproduce the transition-path dynamics. We show that an alternative, first-principles free-energy landscape predicts transition-path statistics that agree well with simulations and single-molecule experiments without requiring dynamical data as an input. This "topological configuration" model assumes that distinct, native-like substructures assemble on a time scale that is slower than native-contact formation but faster than the folding of the entire protein. Using only equilibrium simulation data to determine the free energies of these coarse-grained intermediate states, we predict a broad distribution of transition-path transit times that agrees well with the transition-path durations observed in simulations. We further show that both the distribution of finite-time displacements on a one-dimensional order parameter and the ensemble of transition-path trajectories generated by the model are consistent with the simulated transition paths. These results indicate that a landscape based on transient folding intermediates, which are often hidden by one-dimensional projections, can form the basis of a predictive model of protein-folding transition-path dynamics.

SUBMITTER: Jacobs WM 

PROVIDER: S-EPMC6386633 | biostudies-literature | 2018 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Accurate Protein-Folding Transition-Path Statistics from a Simple Free-Energy Landscape.

Jacobs William M WM   Shakhnovich Eugene I EI  

The journal of physical chemistry. B 20180822 49


A central goal of protein-folding theory is to predict the stochastic dynamics of transition paths-the rare trajectories that transit between the folded and unfolded ensembles-using only thermodynamic information, such as a low-dimensional equilibrium free-energy landscape. However, commonly used one-dimensional landscapes typically fall short of this aim, because an empirical coordinate-dependent diffusion coefficient has to be fit to transition-path trajectory data in order to reproduce the tr  ...[more]

Similar Datasets

| S-EPMC2527276 | biostudies-other
| S-EPMC3437844 | biostudies-other
| S-EPMC4968343 | biostudies-literature
| S-EPMC5153537 | biostudies-literature
| S-EPMC138565 | biostudies-literature
| S-EPMC1303238 | biostudies-literature
| S-EPMC3497829 | biostudies-literature
| S-EPMC4651025 | biostudies-literature
| S-EPMC2234171 | biostudies-literature
| S-EPMC263783 | biostudies-literature