Unknown

Dataset Information

0

New Insights Into the Role of mTOR Signaling in the Cardiovascular System.


ABSTRACT: The mTOR (mechanistic target of rapamycin) is a master regulator of several crucial cellular processes, including protein synthesis, cellular growth, proliferation, autophagy, lysosomal function, and cell metabolism. mTOR interacts with specific adaptor proteins to form 2 multiprotein complexes, called mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2). In the cardiovascular system, the mTOR pathway regulates both physiological and pathological processes in the heart. It is needed for embryonic cardiovascular development and for maintaining cardiac homeostasis in postnatal life. Studies involving mTOR loss-of-function models revealed that mTORC1 activation is indispensable for the development of adaptive cardiac hypertrophy in response to mechanical overload. mTORC2 is also required for normal cardiac physiology and ensures cardiomyocyte survival in response to pressure overload. However, partial genetic or pharmacological inhibition of mTORC1 reduces cardiac remodeling and heart failure in response to pressure overload and chronic myocardial infarction. In addition, mTORC1 blockade reduces cardiac derangements induced by genetic and metabolic disorders and has been reported to extend life span in mice. These studies suggest that pharmacological targeting of mTOR may represent a therapeutic strategy to confer cardioprotection, although clinical evidence in support of this notion is still scarce. This review summarizes and discusses the new evidence on the pathophysiological role of mTOR signaling in the cardiovascular system.

SUBMITTER: Sciarretta S 

PROVIDER: S-EPMC6398933 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

New Insights Into the Role of mTOR Signaling in the Cardiovascular System.

Sciarretta Sebastiano S   Forte Maurizio M   Frati Giacomo G   Sadoshima Junichi J  

Circulation research 20180201 3


The mTOR (mechanistic target of rapamycin) is a master regulator of several crucial cellular processes, including protein synthesis, cellular growth, proliferation, autophagy, lysosomal function, and cell metabolism. mTOR interacts with specific adaptor proteins to form 2 multiprotein complexes, called mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2). In the cardiovascular system, the mTOR pathway regulates both physiological and pathological processes in the heart. It is needed for embryonic  ...[more]

Similar Datasets

| S-EPMC6165581 | biostudies-literature
| S-EPMC4310665 | biostudies-other
| S-EPMC7583974 | biostudies-literature
| S-EPMC2678688 | biostudies-literature
2022-01-18 | GSE193490 | GEO
| S-EPMC7283382 | biostudies-literature
2022-07-08 | GSE133949 | GEO
| S-EPMC4423030 | biostudies-literature
| S-EPMC8268656 | biostudies-literature
| S-EPMC6412338 | biostudies-literature