Unknown

Dataset Information

0

Single-Channel Resolution of the Interaction between C-Terminal CaV1.3 Isoforms and Calmodulin.


ABSTRACT: Voltage-dependent calcium (CaV) 1.3 channels are involved in the control of cellular excitability and pacemaking in neuronal, cardiac, and sensory cells. Various proteins interact with the alternatively spliced channel C-terminus regulating gating of CaV1.3 channels. Binding of a regulatory calcium-binding protein calmodulin (CaM) to the proximal C-terminus leads to the boosting of channel activity and promotes calcium-dependent inactivation (CDI). The C-terminal modulator domain (CTM) of CaV1.3 channels can interfere with the CaM binding, thereby inhibiting channel activity and CDI. Here, we compared single-channel gating behavior of two natural CaV1.3 splice isoforms: the long CaV1.342 with the full-length CTM and the short CaV1.342A with the C-terminus truncated before the CTM. We found that CaM regulation of CaV1.3 channels is dynamic on a minute timescale. We observed that at equilibrium, single CaV1.342 channels occasionally switched from low to high open probability, which perhaps reflects occasional binding of CaM despite the presence of CTM. Similarly, when the amount of the available CaM in the cell was reduced, the short CaV1.342A isoform showed patterns of the low channel activity. CDI also underwent periodic changes with corresponding kinetics in both isoforms. Our results suggest that the competition between CTM and CaM is influenced by calcium, allowing further fine-tuning of CaV1.3 channel activity for particular cellular needs.

SUBMITTER: Kuzmenkina E 

PROVIDER: S-EPMC6403076 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-Channel Resolution of the Interaction between C-Terminal Ca<sub>V</sub>1.3 Isoforms and Calmodulin.

Kuzmenkina Elza E   Novikova Elena E   Jangsangthong Wanchana W   Matthes Jan J   Herzig Stefan S  

Biophysical journal 20190201 5


Voltage-dependent calcium (Ca<sub>V</sub>) 1.3 channels are involved in the control of cellular excitability and pacemaking in neuronal, cardiac, and sensory cells. Various proteins interact with the alternatively spliced channel C-terminus regulating gating of Ca<sub>V</sub>1.3 channels. Binding of a regulatory calcium-binding protein calmodulin (CaM) to the proximal C-terminus leads to the boosting of channel activity and promotes calcium-dependent inactivation (CDI). The C-terminal modulator  ...[more]

Similar Datasets

| S-EPMC4823145 | biostudies-literature
| S-EPMC8409951 | biostudies-literature
| S-EPMC10657410 | biostudies-literature
| S-EPMC3297783 | biostudies-literature
| S-EPMC2828906 | biostudies-literature
| S-EPMC7515574 | biostudies-literature
| S-EPMC5555837 | biostudies-literature
| S-EPMC7642305 | biostudies-literature
| S-EPMC7502546 | biostudies-literature