Unknown

Dataset Information

0

Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog.


ABSTRACT: Betulinic acid (BA) and its derivatives are a class of high-profile drug candidates, but their anticancer effects on resistant cancer have rarely been reported. Although a few studies indicated mitophagy is related with drug resistance, its role in different cancer types and anticancer agents treatment remains largely unclear. Here, we find that B5G1, a new derivative of BA, induces cell death in multidrug resistant cancer cells HepG2/ADM and MCF-7/ADR through mitochondrial-apoptosis pathway. B5G1 also triggers mitophagy independent on Atg5/Beclin 1. Further mechanistic study indicates that B5G1 upregulates PTEN-induced putative kinase 1 (PINK1) to recruit Parkin to mitochondria followed by ubiquitination of Mfn2 to initiate mitophagy. Inhibition of mitophagy by PINK1 siRNA, mdivi-1, or bafilomycin A1 (Baf A1) promotes B5G1-induced cell death. In addition, ROS production and mitochondrial damage in B5G1-treated HepG2/ADM cells cause mitochondrial apoptosis and mitophagy. In vivo study shown that B5G1 dramatically inhibits HepG2/ADM xenograft growth accompanied by apoptosis and mitophagy induction. Together, our results provide the first demonstration that B5G1, as a novel mitophagy inducer, has the potential to be developed into a drug candidate for treating multidrug resistant cancer.

SUBMITTER: Yao N 

PROVIDER: S-EPMC6408511 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog.

Yao Nan N   Wang Chenran C   Hu Nan N   Li Yingjie Y   Liu Mingqun M   Lei Yuhe Y   Chen Minfeng M   Chen Liping L   Chen Chen C   Lan Ping P   Chen Weimin W   Chen Zhesheng Z   Fu Dengrui D   Ye Wencai W   Zhang Dongmei D  

Cell death & disease 20190308 3


Betulinic acid (BA) and its derivatives are a class of high-profile drug candidates, but their anticancer effects on resistant cancer have rarely been reported. Although a few studies indicated mitophagy is related with drug resistance, its role in different cancer types and anticancer agents treatment remains largely unclear. Here, we find that B5G1, a new derivative of BA, induces cell death in multidrug resistant cancer cells HepG2/ADM and MCF-7/ADR through mitochondrial-apoptosis pathway. B5  ...[more]

Similar Datasets

| S-EPMC2806779 | biostudies-literature
| S-EPMC6008047 | biostudies-literature
| S-EPMC5705204 | biostudies-literature
| S-EPMC6999623 | biostudies-literature
| S-EPMC5633131 | biostudies-other
| S-EPMC9762950 | biostudies-literature
| S-EPMC6560035 | biostudies-literature
| S-EPMC5739729 | biostudies-literature
| S-EPMC3981094 | biostudies-literature
| S-EPMC4590680 | biostudies-literature