Unknown

Dataset Information

0

Integrated Analysis of Mouse and Human Gastric Neoplasms Identifies Conserved microRNA Networks in Gastric Carcinogenesis.


ABSTRACT: BACKGROUND & AIMS:microRNAs (miRNAs) are small noncoding RNAs that bind to the 3' untranslated regions of mRNAs to promote their degradation or block their translation. Mice with disruption of the trefoil factor 1 gene (Tff1) develop gastric neoplasms. We studied these mice to identify conserved miRNA networks involved in gastric carcinogenesis. METHODS:We performed next-generation miRNA sequencing analysis of normal gastric tissues (based on histology) from patients without evidence of gastric neoplasm (n = 64) and from TFF1-knockout mice (n = 22). We validated our findings using 270 normal gastric tissues (including 61 samples from patients without evidence of neoplastic lesions) and 234 gastric tumor tissues from 3 separate cohorts of patients and from mice. We performed molecular and functional assays using cell lines (MKN28, MKN45, STKM2, and AGS cells), gastric organoids, and mice with xenograft tumors. RESULTS:We identified 117 miRNAs that were significantly deregulated in mouse and human gastric tumor tissues compared with nontumor tissues. We validated changes in levels of 6 miRNAs by quantitative real-time polymerase chain reaction analyses of neoplastic gastric tissues from mice (n = 39) and 3 independent patient cohorts (n = 332 patients total). We found levels of MIR135B-5p, MIR196B-5p, and MIR92A-5p to be increased in tumor tissues, whereas levels of MIR143-3p, MIR204-5p, and MIR133-3p were decreased in tumor tissues. Levels of MIR143-3p were reduced not only in gastric cancer tissues but also in normal tissues adjacent to tumors in humans and low-grade dysplasia in mice. Transgenic expression of MIR143-3p in gastric cancer cell lines reduced their proliferation and restored their sensitivity to cisplatin. AGS cells with stable transgenic expression of MIR143-3p grew more slowly as xenograft tumors in mice than control AGS cells; tumor growth from AGS cells that expressed MIR143-3p, but not control cells, was sensitive to cisplatin. We identified and validated bromodomain containing 2 (BRD2) as a direct target of MIR143-3p; increased levels of BRD2 in gastric tumors was associated with shorter survival times for patients. CONCLUSIONS:In an analysis of miRNA profiles of gastric tumors from mice and human patients, we identified a conserved signature associated with the early stages of gastric tumorigenesis. Strategies to restore MIR143-3p or inhibit BRD2 might be developed for treatment of gastric cancer.

SUBMITTER: Chen Z 

PROVIDER: S-EPMC6409191 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integrated Analysis of Mouse and Human Gastric Neoplasms Identifies Conserved microRNA Networks in Gastric Carcinogenesis.

Chen Zheng Z   Li Zheng Z   Soutto Mohammed M   Wang Weizhi W   Piazuelo M Blanca MB   Zhu Shoumin S   Guo Yan Y   Maturana Maria J MJ   Corvalan Alejandro H AH   Chen Xi X   Xu Zekuan Z   El-Rifai Wael M WM  

Gastroenterology 20181128 4


<h4>Background & aims</h4>microRNAs (miRNAs) are small noncoding RNAs that bind to the 3' untranslated regions of mRNAs to promote their degradation or block their translation. Mice with disruption of the trefoil factor 1 gene (Tff1) develop gastric neoplasms. We studied these mice to identify conserved miRNA networks involved in gastric carcinogenesis.<h4>Methods</h4>We performed next-generation miRNA sequencing analysis of normal gastric tissues (based on histology) from patients without evide  ...[more]

Similar Datasets

| S-EPMC5524517 | biostudies-literature
| S-EPMC6158169 | biostudies-literature
| S-EPMC8146150 | biostudies-literature
| S-EPMC3029394 | biostudies-literature
| S-EPMC4633893 | biostudies-literature
| S-EPMC4331712 | biostudies-literature
| S-EPMC4539989 | biostudies-literature
| S-EPMC4384419 | biostudies-literature
| S-EPMC4627594 | biostudies-literature
| S-EPMC4303574 | biostudies-literature