Unknown

Dataset Information

0

Biosynthesized Highly Stable Au/C Nanodots: Ideal Probes for the Selective and Sensitive Detection of Hg2+ Ions.


ABSTRACT: The enormous ongoing industrial development has caused serious water pollution which has become a major crisis, particularly in developing countries. Among the various water pollutants, non-biodegradable heavy metal ions are the most prevalent. Thus, trace-level detection of these metal ions using a simple technique is essential. To address this issue, we have developed a fluorescent probe of Au/C nanodots (GCNDs-gold carbon nanodots) using an eco-friendly method based on an extract from waste onion leaves (Allium cepa-red onions). The leaves are rich in many flavonoids, playing a vital role in the formation of GCNDs. Transmission electron microscopy (TEM) and Scanning transmission electron microscopy-Energy-dispersive X-ray spectroscopy (STEM-EDS) elemental mapping clearly indicated that the newly synthesized materials are approximately 2 nm in size. The resulting GCNDs exhibited a strong orange fluorescence with excitation at 380 nm and emission at 610 nm. The GCNDs were applied as a fluorescent probe for the detection of Hg2+ ions. They can detect ultra-trace concentrations of Hg2+ with a detection limit of 1.3 nM. The X-ray photoelectron spectroscopy results facilitated the identification of a clear detection mechanism. We also used the new probe on a real river water sample. The newly developed sensor is highly stable with a strong fluorescent property and can be used for various applications such as in catalysis and biomedicine.

SUBMITTER: Venkateswarlu S 

PROVIDER: S-EPMC6409943 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5597581 | biostudies-literature
| S-EPMC8697840 | biostudies-literature
| S-EPMC10096070 | biostudies-literature
| S-EPMC6338984 | biostudies-literature
| S-EPMC6463747 | biostudies-literature
| S-EPMC9048429 | biostudies-literature
| S-EPMC9050213 | biostudies-literature
| S-EPMC8361937 | biostudies-literature
| S-EPMC7205978 | biostudies-literature
| S-EPMC6277514 | biostudies-literature