Unknown

Dataset Information

0

Affordable Fabrication of Conductive Electrodes and Dielectric Films for a Paper-based Digital Microfluidic Chip.


ABSTRACT: In order to fabricate a digital microfluidic (DMF) chip, which requires a patterned array of electrodes coated with a dielectric film, we explored two simple methods: Ballpoint pen printing to generate the electrodes, and wrapping of a dielectric plastic film to coat the electrodes. For precise and programmable printing of the patterned electrodes, we used a digital plotter with a ballpoint pen filled with a silver nanoparticle (AgNP) ink. Instead of using conventional material deposition methods, such as chemical vapor deposition, printing, and spin coating, for fabricating the thin dielectric layer, we used a simple method in which we prepared a thin dielectric layer using pre-made linear, low-density polyethylene (LLDPE) plastic (17-?m thick) by simple wrapping. We then sealed it tightly with thin silicone oil layers so that it could be used as a DMF chip. Such a treated dielectric layer showed good electrowetting performance for a sessile drop without contact angle hysteresis under an applied voltage of less than 170 V. By using this straightforward fabrication method, we quickly and affordably fabricated a paper-based DMF chip and demonstrated the digital electrofluidic actuation and manipulation of drops.

SUBMITTER: Soum V 

PROVIDER: S-EPMC6412519 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Affordable Fabrication of Conductive Electrodes and Dielectric Films for a Paper-based Digital Microfluidic Chip.

Soum Veasna V   Kim Yunpyo Y   Park Sooyong S   Chuong Mary M   Ryu Soo Ryeon SR   Lee Sang Ho SH   Tanev Georgi G   Madsen Jan J   Kwon Oh-Sun OS   Shin Kwanwoo K  

Micromachines 20190207 2


In order to fabricate a digital microfluidic (DMF) chip, which requires a patterned array of electrodes coated with a dielectric film, we explored two simple methods: Ballpoint pen printing to generate the electrodes, and wrapping of a dielectric plastic film to coat the electrodes. For precise and programmable printing of the patterned electrodes, we used a digital plotter with a ballpoint pen filled with a silver nanoparticle (AgNP) ink. Instead of using conventional material deposition method  ...[more]

Similar Datasets

| S-EPMC4416819 | biostudies-literature
| S-EPMC6327054 | biostudies-literature
| S-EPMC6189997 | biostudies-literature
| S-EPMC6523742 | biostudies-literature
| S-EPMC5727098 | biostudies-literature