Unknown

Dataset Information

0

Expanding the repertoire of glucocorticoid receptor target genes by engineering genomic response elements.


ABSTRACT: The glucocorticoid receptor (GR), a hormone-activated transcription factor, binds to a myriad of genomic binding sites yet seems to regulate a much smaller number of genes. Genome-wide analysis of GR binding and gene regulation has shown that the likelihood of GR-dependent regulation increases with decreased distance of its binding to the transcriptional start site of a gene. To test if we can adopt this knowledge to expand the repertoire of GR target genes, we used CRISPR/Cas-mediated homology-directed repair to add a single GR-binding site directly upstream of the transcriptional start site of each of four genes. To our surprise, we found that the addition of a single GR-binding site can be enough to convert a gene into a GR target. The gain of GR-dependent regulation was observed for two of four genes analyzed and coincided with acquired GR binding at the introduced binding site. However, the gene-specific gain of GR-dependent regulation could not be explained by obvious differences in chromatin accessibility between converted genes and their non-converted counterparts. Furthermore, by introducing GR-binding sequences with different nucleotide compositions, we show that activation can be facilitated by distinct sequences without obvious differences in activity between the GR-binding sequence variants we tested. The approach to use genome engineering to build genomic response elements facilitates the generation of cell lines with tailored repertoires of GR-responsive genes and a framework to test and refine our understanding of the cis-regulatory logic of gene regulation by testing if engineered response elements behave as predicted.

SUBMITTER: Thormann V 

PROVIDER: S-EPMC6417287 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Expanding the repertoire of glucocorticoid receptor target genes by engineering genomic response elements.

Thormann Verena V   Glaser Laura V LV   Rothkegel Maika C MC   Borschiwer Marina M   Bothe Melissa M   Fuchs Alisa A   Meijsing Sebastiaan H SH  

Life science alliance 20190313 2


The glucocorticoid receptor (GR), a hormone-activated transcription factor, binds to a myriad of genomic binding sites yet seems to regulate a much smaller number of genes. Genome-wide analysis of GR binding and gene regulation has shown that the likelihood of GR-dependent regulation increases with decreased distance of its binding to the transcriptional start site of a gene. To test if we can adopt this knowledge to expand the repertoire of GR target genes, we used CRISPR/Cas-mediated homology-  ...[more]

Similar Datasets

| S-EPMC5889392 | biostudies-literature
| S-EPMC2809115 | biostudies-other
| S-EPMC522873 | biostudies-literature
| S-EPMC524211 | biostudies-literature
| S-EPMC3627568 | biostudies-literature
| S-EPMC3650245 | biostudies-other
2011-04-25 | E-GEOD-28840 | biostudies-arrayexpress
2011-04-25 | GSE28840 | GEO
| S-EPMC4911013 | biostudies-literature
| S-EPMC4149261 | biostudies-literature