Unknown

Dataset Information

0

Regeneration associated transcriptional signature of retinal microglia and macrophages.


ABSTRACT: Zebrafish have the remarkable capacity to regenerate retinal neurons following a variety of damage paradigms. Following initial tissue insult and a period of cell death, a proliferative phase ensues that generates neuronal progenitors, which ultimately regenerate damaged neurons. Recent work has revealed that Müller glia are the source of regenerated neurons in zebrafish. However, the roles of another important class of glia present in the retina, microglia, during this regenerative phase remain elusive. Here, we examine retinal tissue and perform QuantSeq. 3'mRNA sequencing/transcriptome analysis to reveal localization and putative functions, respectively, of mpeg1 expressing cells (microglia/macrophages) during Müller glia-mediated regeneration, corresponding to a time of progenitor proliferation and production of new neurons. Our results indicate that in this regenerative state, mpeg1-expressing cells are located in regions containing regenerative Müller glia and are likely engaged in active vesicle trafficking. Further, mpeg1+ cells congregate at and around the optic nerve head. Our transcriptome analysis reveals several novel genes not previously described in microglia. This dataset represents the first report, to our knowledge, to use RNA sequencing to probe the microglial transcriptome in such context, and therefore provides a resource towards understanding microglia/macrophage function during successful retinal (and central nervous tissue) regeneration.

SUBMITTER: Mitchell DM 

PROVIDER: S-EPMC6423051 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Regeneration associated transcriptional signature of retinal microglia and macrophages.

Mitchell Diana M DM   Sun Chi C   Hunter Samuel S SS   New Daniel D DD   Stenkamp Deborah L DL  

Scientific reports 20190318 1


Zebrafish have the remarkable capacity to regenerate retinal neurons following a variety of damage paradigms. Following initial tissue insult and a period of cell death, a proliferative phase ensues that generates neuronal progenitors, which ultimately regenerate damaged neurons. Recent work has revealed that Müller glia are the source of regenerated neurons in zebrafish. However, the roles of another important class of glia present in the retina, microglia, during this regenerative phase remain  ...[more]

Similar Datasets

| S-EPMC8140091 | biostudies-literature
2021-04-12 | PXD024731 | Pride
2019-03-18 | GSE120467 | GEO
| S-EPMC11002095 | biostudies-literature
| S-EPMC8998238 | biostudies-literature
| S-EPMC5342745 | biostudies-literature
| S-EPMC8643067 | biostudies-literature
2021-01-31 | GSE165306 | GEO
| S-EPMC11362524 | biostudies-literature
| S-EPMC7057267 | biostudies-literature