Project description:We present a homozygous missense mutation in the COL7A1 gene (NM_000094.4: c.6262G>A, p.G2088R) in a case of inversa recessive dystrophic epidermolysis bullosa (RDEB-I) from a nonconsanguineous Vietnamese family. Although a heterozygous form of this mutation in combination with a premature termination codon allele has been shown to cause RDEB-I, this is the first report of homozygosity of this mutation as the etiology. Here, we investigated the molecular basis of the patient's disease for prenatal diagnosis after genetic counseling of the parents.
Project description:Several genes, mainly involved in podocyte cytoskeleton regulation, have been implicated in familial forms of primary FSGS. We identified a homozygous missense mutation (p.P209L) in the TTC21B gene in seven families with FSGS. Mutations in this ciliary gene were previously reported to cause nephronophthisis, a chronic tubulointerstitial nephropathy. Notably, tubular basement membrane thickening reminiscent of that observed in nephronophthisis was present in patients with FSGS and the p.P209L mutation. We demonstrated that the TTC21B gene product IFT139, an intraflagellar transport-A component, mainly localizes at the base of the primary cilium in developing podocytes from human fetal tissue and in undifferentiated cultured podocytes. In contrast, in nonciliated adult podocytes and differentiated cultured cells, IFT139 relocalized along the extended microtubule network. We further showed that knockdown of IFT139 in podocytes leads to primary cilia defects, abnormal cell migration, and cytoskeleton alterations, which can be partially rescued by p.P209L overexpression, indicating its hypomorphic effect. Our results demonstrate the involvement of a ciliary gene in a glomerular disorder and point to a critical function of IFT139 in podocytes. Altogether, these data suggest that this homozygous TTC21B p.P209L mutation leads to a novel hereditary kidney disorder with both glomerular and tubulointerstitial damages.
Project description:Idiopathic pulmonary fibrosis (IPF) is an age-related disease featuring progressive lung scarring. To elucidate the molecular basis of IPF, we performed exome sequencing of familial kindreds with pulmonary fibrosis. Gene burden analysis comparing 78 European cases and 2,816 controls implicated PARN, an exoribonuclease with no previous connection to telomere biology or disease, with five new heterozygous damaging mutations in unrelated cases and none in controls (P = 1.3 × 10(-8)); mutations were shared by all affected relatives (odds in favor of linkage = 4,096:1). RTEL1, an established locus for dyskeratosis congenita, harbored significantly more new damaging and missense variants at conserved residues in cases than in controls (P = 1.6 × 10(-6)). PARN and RTEL1 mutation carriers had shortened leukocyte telomere lengths, and we observed epigenetic inheritance of short telomeres in family members. Together, these genes explain ~7% of familial pulmonary fibrosis and strengthen the link between lung fibrosis and telomere dysfunction.
Project description:The role of constitutional genetic defects in idiopathic pulmonary fibrosis (IPF) is increasingly appreciated. Monogenic disorders associated with IPF affect two pathways: telomere maintenance, accounting for approximately 10% of all patients with IPF, and surfactant biology, responsible for 1%-3% of cases and often co-occurring with lung cancer. We examined the prevalence of rare variants in five surfactant-related genes, SFTPA1, SFPTA2, SFTPC, ABCA3, and NKX2-1, that were previously linked to lung disease in whole genome sequencing data from 431 patients with IPF. We identified functionally deleterious rare variants in SFTPA2 with a prevalence of 1.3% in individuals with and without a family history of IPF. All individuals had no personal history of lung cancer, but substantial bronchiolar metaplasia was noted on lung explants and biopsies. Five patients had novel missense variants in NKX2-1, but the contribution to disease is unclear. In general, patients were younger and had longer telomeres compared with the majority of patients with IPF suggesting that these features may be useful for identifying this subset of patients in the clinic. These data suggest that SFTPA2 variants may be more common in unselected IPF cohorts and may manifest in the absence of personal/family history of lung cancer or IPF.
Project description:Rare autosomal-recessive variants in tetratricopeptide repeat domain 7A (TTC7A) gene have been shown to cause intestinal and immune disorders of variable severity. Missense mutations in TTC7A gene, usually retaining most of the functional motifs, is associated with relative milder clinical presentations. In this study, we reported a patient who was suffering from severe multiple intestinal atresia (MIA) with combined immunodeficiency (CID) that led to the pyloric diaphragm, ileum atresia, colon stenosis, and multiple episodes of sepsis. In spite of several surgeries and supportive treatment, the patient died of severe sepsis and multiple organ failure at age of 3 months. The whole exome sequencing (WES) of peripheral blood samples identified a novel homozygous TTC7A missense mutation (c. 206T>C, p. L69P), inherited from his parents with consanguineous marriage. In silico analysis revealed that a hydrogen bond present between Gly65 and Leu69 in the wild-type TTC7A was disrupted by the Leu69Pro mutation. Moreover, this homozygous missense mutation led to a reduced TTC7A expression in lymphocytes and intestinal tissues, accompanied by impeded lymphocyte development. Further studies demonstrated that the PI4K-FAM126A-EFR3A pathway was impaired in colon tissues. Our data strongly support the linkage of severe MIA-CID with the missense mutation in TTC7A gene. More knowledge of the TTC7A protein functions will have important therapeutic implications for patients with MIA-CID.
Project description:BackgroundIdiopathic pulmonary fibrosis (IPF) is the most common of short telomere phenotypes. Familial clustering of IPF is common, but the genetic basis remains unknown in more than one-half of cases. We identified a 65-year-old man with familial IPF, short telomere length, and low telomerase RNA levels. He was diagnosed with a short telomere syndrome after developing hematologic complications post-lung transplantation, but no mutations were identified in a clinical testing pipeline.Research questionWhat is the molecular basis underlying the familial IPF and low telomerase RNA levels in this patient?Study design and methodsWe analyzed whole-genome sequence data and performed functional molecular studies on cells derived from the patient and his family.ResultsWe identified a previously unreported synonymous variant c.942G>A p.K314K in DKC1, the gene encoding the dyskerin ribonucleoprotein, which is required for telomerase RNA biogenesis. The mutation created a competing de novo exonic splicing enhancer, and the misspliced product was degraded by nonsense-mediated decay causing an overall dyskerin deficiency in mutation carriers. In silico tools identified other rare silent DKC1 variants that warrant functional evaluation if found in patients with short telomere-mediated disease.InterpretationOur data point to silent mutation in telomere maintenance genes as a mechanism of familial pulmonary fibrosis. In contrast to DKC1 missense mutations, which primarily manifest in children as dyskeratosis congenita, hypomorphic mutations affecting dyskerin levels likely have a predilection to presenting in adults as pulmonary fibrosis.
Project description:BackgroundWe recently described a novel autosomal recessive neurodevelopmental disorder with intellectual disability in four patients from two related Hutterite families. Identity-by-descent mapping localized the gene to a 5.1 Mb region at chromosome 16p13.3 containing more than 170 known or predicted genes. The objective of this study was to identify the causative gene for this rare disorder.Methods and resultsCandidate gene sequencing followed by exome sequencing identified a homozygous missense mutation p.Gly46Arg, in THOC6. No other potentially causative coding variants were present within the critical region on chromosome 16. THOC6 is a member of the THO/TREX complex which is involved in coordinating mRNA processing with mRNA export from the nucleus. In situ hybridization showed that thoc6 is highly expressed in the midbrain and eyes. Cellular localization studies demonstrated that wild-type THOC6 is present within the nucleus as is the case for other THO complex proteins. However, mutant THOC6 was predominantly localized to the cytoplasm, suggesting that the mutant protein is unable to carry out its normal function. siRNA knockdown of THOC6 revealed increased apoptosis in cultured cells.ConclusionOur findings associate a missense mutation in THOC6 with intellectual disability, suggesting the THO/TREX complex plays an important role in neurodevelopment.
Project description:BackgroundHomozygous inactivating GCK mutations have been repeatedly reported to cause severe hyperglycemia, presenting as permanent neonatal diabetes mellitus (PNDM). Conversely, only two cases of GCK homozygous mutations causing mild hyperglycemia have been so far described. We here report a novel GCK mutation (c.1116G>C, p.E372D), in a family with one homozygous member showing mild hyperglycemia.MethodsGCK mutational screening was carried out by Sanger sequencing. Computational analyses to investigate pathogenicity and molecular dynamics (MD) were performed for GCK-E372D and for previously described homozygous mutations associated with mild (n = 2) or severe (n = 1) hyperglycemia, used as references.ResultsOf four mildly hyperglycemic family-members, three were heterozygous and one, diagnosed in the adulthood, was homozygous for GCK-E372D. Two nondiabetic family members carried no mutations. Fasting glucose (p = 0.016) and HbA1c (p = 0.035) correlated with the number of mutated alleles (0-2). In-silico predicted pathogenicity was not correlated with the four mutations' severity. At MD, GCK-E372D conferred protein structure flexibility intermediate between mild and severe GCK mutations.ConclusionsWe present the third case of homozygous GCK mutations associated with mild hyperglycemia, rather than PNDM. Our in-silico analyses support previous evidences suggesting that protein stability plays a role in determining clinical severity of GCK mutations.