Project description:Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive genetic disorder characterized by oculocutaneous albinism and a bleeding diathesis due to platelet dysfunction. More than 50% of cases worldwide are diagnosed on the Caribbean island of Puerto Rico. Genetic testing plays a growing role in diagnosis; however, not all patients with HPS have identified genetic mutations. In Puerto Rico, patients with HPS are often identified shortly after birth by their albinism, although the degree of hypopigmentation is highly variable. Ten subtypes have been described. Patients with HPS-1, HPS-2, and HPS-4 tend to develop pulmonary fibrosis in Puerto Rico; 100% of patients with HPS-1 develop HPS-PF. HPS-PF and idiopathic pulmonary fibrosis are considered similar entities (albeit with distinct causes) because both can show similar histological disease patterns. However, in contrast to idiopathic pulmonary fibrosis, HPS-PF manifests much earlier, often at 30-40 years of age. The progression of HPS-PF is characterized by the development of dyspnea and increasingly debilitating hypoxemia. No therapeutic interventions are currently approved by the U.S. Food and Drug Administration for the treatment of HPS and HPS-PF. However, the approval of two new antifibrotic drugs, pirfenidone and nintedanib, has prompted new interest in identifying drugs capable of reversing or halting the progression of HPS-PF. Thus, lung transplantation remains the only potentially life-prolonging treatment. At present, two clinical trials are recruiting patients with HPS-PF to identify biomarkers for disease progression. Advances in the diagnosis and management of these patients will require the establishment of multidisciplinary centers of excellence staffed by experts in this disease.
Project description:Alveolar epithelial cell (AEC) dysfunction underlies the pathogenesis of pulmonary fibrosis in Hermansky-Pudlak syndrome (HPS) and other genetic syndromes associated with interstitial lung disease; however, mechanisms linking AEC dysfunction and fibrotic remodeling are incompletely understood. Since increased macrophage recruitment precedes pulmonary fibrosis in HPS, we investigated whether crosstalk between AECs and macrophages determines fibrotic susceptibility. We found that AECs from HPS mice produce excessive MCP-1, which was associated with increased macrophages in the lungs of unchallenged HPS mice. Blocking MCP-1/CCR2 signaling in HPS mice with genetic deficiency of CCR2 or targeted deletion of MCP-1 in AECs normalized macrophage recruitment, decreased AEC apoptosis, and reduced lung fibrosis in these mice following treatment with low-dose bleomycin. We observed increased TGF-? production by HPS macrophages, which was eliminated by CCR2 deletion. Selective deletion of TGF-? in myeloid cells or of TGF-? signaling in AECs through deletion of TGFBR2 protected HPS mice from AEC apoptosis and bleomycin-induced fibrosis. Together, these data reveal a feedback loop in which increased MCP-1 production by dysfunctional AECs results in recruitment and activation of lung macrophages that produce TGF-?, thus amplifying the fibrotic cascade through AEC apoptosis and stimulation of fibrotic remodeling.
Project description:A 30-year-old male smoker with congenital amblyopia and oculocutaneous albinism was admitted to our hospital complaining of progressive dyspnea on exertion. Chest computed tomography images revealed diffuse reticular opacities and honeycombing in the bilateral lower lobes with sparing of the subpleural region along with emphysema predominantly in the upper lobes. Lung biopsy specimens showed a mixture of usual interstitial pneumonia and a non-specific interstitial pneumonia pattern with emphysema. Of note, cuboidal epithelial cells with foamy cytoplasm on the alveolar walls and phagocytic macrophages with ceroid pigments in the fibrotic lesions were observed. The patient was diagnosed with Hermansky-Pudlak syndrome (HPS) associated with combined pulmonary fibrosis and emphysema (CPFE). Six years following the patient's initial admission to our hospital, he died from acute exacerbation (AE) of CPFE associated with HPS. This is one of only few reports available on the clinicopathological characteristics of AE in CPFE associated with HPS.
Project description:Hermansky-Pudlak syndrome (HPS), particularly in types 1 and 4, is characterized by progressive pulmonary fibrosis, a major cause of morbidity and mortality. However, the precise mechanisms driving pulmonary fibrosis in HPS are not fully elucidated. Our previous studies have suggested that CHI3L1-driven fibroproliferation may be a significant factor in HPS-associated fibrosis. This study aimed to explore the role of CHI3L1-CRTH2 interaction on ILC2s and explored the potential contribution of ILC2-fibroblast crosstalk in the development of pulmonary fibrosis in HPS. We identified ILC2s in lung tissues from idiopathic pulmonary fibrosis (IPF) and HPS patients. Our findings suggest that ILC2s may directly stimulate the proliferation and differentiation of primary lung fibroblasts partially through Areg-EGFR-dependent mechanisms. Additionally, specific overexpression of CHI3L1 in the ILC2 population using the IL-7Rcre driver, which was associated with increased fibroproliferation, indicates that ILC2-mediated, CRTH2-dependent mechanisms might contribute to optimal CHI3L1-induced fibroproliferative repair in HPS-associated pulmonary fibrosis.
Project description:Pulmonary fibrosis is a progressive, fatal manifestation of Hermansky-Pudlak syndrome (HPS). Some patients with advanced HPS pulmonary fibrosis undergo lung transplantation despite their disease-associated bleeding tendency; others die while awaiting donor organs. The objective of this study is to determine the clinical management and outcomes of a cohort with advanced HPS pulmonary fibrosis who were evaluated for lung transplantation. Six patients with HPS-1 pulmonary fibrosis were evaluated at the National Institutes of Health Clinical Center and one of two regional lung transplant centers. Their median age was 41.5 years pre-transplant. Three of six patients died without receiving a lung transplant. One of these was referred with end-stage pulmonary fibrosis and died before a donor organ became available, and donor organs were not identified for two other patients sensitized from prior blood product transfusions. Three of six patients received bilateral lung transplants; they did not have a history of excessive bleeding. One patient received peri-operative desmopressin, one was transfused with intra-operative platelets, and one received extracorporeal membrane oxygenation and intra-operative prothrombin complex concentrate, platelet transfusion, and desmopressin. One transplant recipient experienced acute rejection that responded to pulsed steroids. No evidence of chronic lung allograft dysfunction or recurrence of HPS pulmonary fibrosis was detected up to 6 years post-transplant in these three lung transplant recipients. In conclusion, lung transplantation and extracorporeal membrane oxygenation are viable options for patients with HPS pulmonary fibrosis. Alloimmunization in HPS patients is an important and potentially preventable barrier to lung transplantation; interventions to limit alloimmunization should be implemented in HPS patients at risk of pulmonary fibrosis to optimize their candidacy for future lung transplants.
Project description:Hermansky-Pudlak syndrome (HPS) is a group of 10 autosomal recessive multisystem disorders, each defined by the deficiency of a specific gene. HPS-associated genes encode components of four ubiquitously expressed protein complexes: Adaptor protein-3 (AP-3) and biogenesis of lysosome-related organelles complex-1 (BLOC-1) through -3. All individuals with HPS exhibit albinism and a bleeding diathesis; additional features occur depending on the defective protein complex. Pulmonary fibrosis is associated with AP-3 and BLOC-3 deficiency, immunodeficiency with AP-3 defects, and gastrointestinal symptoms are more prevalent and severe in BLOC-3 deficiency. Therefore, identification of the HPS subtype is valuable for prognosis, clinical management, and treatment options. The prevalence of HPS is estimated at 1-9 per 1,000,000. Here we summarize 264 reported and novel variants in 10 HPS genes and estimate that ~333 Puerto Rican HPS subjects and ~385 with other ethnicities are reported to date. We provide pathogenicity predictions for missense and splice site variants and list variants with high minor allele frequencies. Current cellular and clinical aspects of HPS are also summarized. This review can serve as a manifest for molecular diagnostics and genetic counseling aspects of HPS.
Project description:Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive multisystem disorder characterized by oculocutaneous albinism (OCA) and bleeding diathesis, although it displays both genetic and phenotypic heterogeneity. Several genetic subtypes of HPS have been identified in human; however, the characterizations of HPS type 4 (HPS-4) genotype and phenotype remain unclear. This study was aimed to identify gene mutation responsible for HPS-4 with pulmonary fibrosis (PF).Two Chinese siblings in their 50 s afflicted with OCA and progressive dyspnea were recruited and underwent clinical and genetic examinations. In both patients, chest high-resolution computerized tomography showed severe interstitial PF in bilateral lung fields, and the pulmonary function test indicated restrictive lung disease. A novel homozygous frameshift mutation (NM_022081: c.630dupC; p.A211fs) in the HPS4 gene was identified by whole-exome sequencing analysis followed by Sanger DNA sequencing, and it segregated with the phenotypes. The c.630dupC mutation was not found in unaffected healthy controls. The patients were considered as HPS-4 with interstitial PF and eventually died of respiratory failure.This is the first report on the genotype and clinical phenotype of HPS-4 in China. Our results demonstrate the association between a novel frameshift mutation in HPS4 and severe PF with poor prognosis in HPS is presented.
Project description:Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Project description:RationaleHermansky-Pudlak syndrome (HPS) is a family of recessive disorders of intracellular trafficking defects that are associated with highly penetrant pulmonary fibrosis. Naturally occurring HPS mice reliably model important features of the human disease, including constitutive alveolar macrophage activation and susceptibility to profibrotic stimuli.ObjectivesTo decipher which cell lineage(s) in the alveolar compartment is the predominant driver of fibrotic susceptibility in HPS.MethodsWe used five different HPS and Chediak-Higashi mouse models to evaluate genotype-specific fibrotic susceptibility. To determine whether intrinsic defects in HPS alveolar macrophages cause fibrotic susceptibility, we generated bone marrow chimeras in HPS and wild-type mice. To directly test the contribution of the pulmonary epithelium, we developed a transgenic model with epithelial-specific correction of the HPS2 defect in an HPS mouse model.Measurements and main resultsBone marrow transplantation experiments demonstrated that both constitutive alveolar macrophage activation and increased susceptibility to bleomycin-induced fibrosis were conferred by the genotype of the lung epithelium, rather than that of the bone marrow-derived, cellular compartment. Furthermore, transgenic epithelial-specific correction of the HPS defect significantly attenuated bleomycin-induced alveolar epithelial apoptosis, fibrotic susceptibility, and macrophage activation. Type II cell apoptosis was genotype specific, caspase dependent, and correlated with the degree of fibrotic susceptibility.ConclusionsWe conclude that pulmonary fibrosis in naturally occurring HPS mice is driven by intracellular trafficking defects that lower the threshold for pulmonary epithelial apoptosis. Our findings demonstrate a pivotal role for the alveolar epithelium in the maintenance of alveolar homeostasis and regulation of alveolar macrophage activation.