Project description:Beta-diversity, the change in species composition between places, is a critical but poorly understood component of biological diversity. Patterns of beta-diversity provide information central to many ecological and evolutionary questions, as well as to conservation planning. Yet beta-diversity is rarely studied across large extents, and the degree of similarity of patterns among taxa at such scales remains untested. To our knowledge, this is the first broad-scale analysis of cross-taxon congruence in beta-diversity, and introduces a new method to map beta-diversity continuously across regions. Congruence between amphibian, bird, and mammal beta-diversity in the Western Hemisphere varies with both geographic location and spatial extent. We demonstrate that areas of high beta-diversity for the three taxa largely coincide, but areas of low beta-diversity exhibit little overlap. These findings suggest that similar processes lead to high levels of differentiation in amphibian, bird, and mammal assemblages, while the ecological and biogeographic factors influencing homogeneity in vertebrate assemblages vary. Knowledge of beta-diversity congruence can help formulate hypotheses about the mechanisms governing regional diversity patterns and should inform conservation, especially as threat from global climate change increases.
Project description:Nitric oxide radical (NO) is a signaling molecule involved in several physiological and pathological processes and a new nitrate-nitrite-NO pathway has emerged as a physiological alternative to the "classic" pathway of NO formation from L-arginine. Since the late 1990s, it has become clear that nitrite can be reduced back to NO under hypoxic/anoxic conditions and exert a significant cytoprotective action in vivo under challenging conditions. To reduce nitrite to NO, mammalian cells can use different metalloproteins that are present in cells to perform other functions, including several heme proteins and molybdoenzymes, comprising what we denominated as the "non-dedicated nitrite reductases". Herein, we will review the current knowledge on two of those "non-dedicated nitrite reductases", the molybdoenzymes xanthine oxidoreductase and aldehyde oxidase, discussing the in vitro and in vivo studies to provide the current picture of the role of these enzymes on the NO metabolism in humans.
Project description:Generating the barriers that protect our inner surfaces from bacteria and other challenges requires large glycoproteins called mucins. These come in two types, gel-forming and transmembrane, all characterized by large, highly O-glycosylated mucin domains that are diversely decorated by Golgi glycosyltransferases to become extended rodlike structures. The general functions of mucins on internal epithelial surfaces are to wash away microorganisms and, even more importantly, to build protective barriers. The latter function is most evident in the large intestine, where the inner mucus layer separates the numerous commensal bacteria from the epithelial cells. The host's conversion of MUC2 to the outer mucus layer allows bacteria to degrade the mucin glycans and recover the energy content that is then shared with the host. The molecular nature of the mucins is complex, and how they construct the extracellular complex glycocalyx and mucus is poorly understood and a future biochemical challenge.
Project description:Pancreatic cancer is characterized by an often dramatic outcome (five year survival < 5%) related to a late diagnosis and a lack of efficient therapy. Therefore, clinicians desperately need new biomarkers and new therapeutic tools to develop new efficient therapies. Mucins belong to an ever increasing family of O-glycoproteins. Secreted mucins are the main component of mucus protecting the epithelia whereas membrane-bound mucins are thought to play important biological roles in cell-cell and cell-matrix interactions, in cell signaling and in modulating biological properties of cancer cells. In this review, we will focus on the altered expression pattern of mucins in pancreatic cancer, from the early neoplastic lesion Pancreatic Intraepithelial Neoplasia (PanIN) to invasive pancreatic carcinomas, and the molecular mechanisms (including genetic and epigenetic regulation) and signaling pathways known to control their expression. Moreover, we will discuss the recent advances about the biology of both secreted and membrane-bound mucins and their key roles in pancreatic carcinogenesis and resistance to therapy. Finally, we will discuss exciting opportunities that mucins offer as potential therapeutic targets in pancreatic cancer.
Project description:TP53 is the most frequently mutated gene in human cancer. Functionally, p53 is activated by a host of stress stimuli and, in turn, governs an exquisitely complex anti-proliferative transcriptional program that touches upon a bewildering array of biological responses. Despite the many unveiled facets of the p53 network, a clear appreciation of how and in what contexts p53 exerts its diverse effects remains unclear. How can we interpret p53's disparate activities and the consequences of its dysfunction to understand how cell type, mutation profile, and epigenetic cell state dictate outcomes, and how might we restore its tumor-suppressive activities in cancer?
Project description:Conservation gardening (CG) represents a socio-ecological approach to address the decline of native plant species and transform the gardening industry into an innovative conservation tool. However, essential information regarding amenable plants, their ecological requirements for gardening, and commercial availability remains limited and not readily available. In this study, we present a workflow using Germany as a case study to bridge this knowledge gap. We synthesized the Red Lists of all 16 federal states in Germany, and text-mined a comprehensive platform for garden plants, as well as multiple German producers of native plants. To provide accessible information, we developed a user-friendly app ( https://conservation-gardening.shinyapps.io/app-en/ ) that offers region-specific lists of CG plants, along with practical guidance for planting and purchasing. Our findings reveal that a median of 845 plant species are red-listed across federal states (ranging from 515 to 1123), with 41% of these species amenable to gardening (ranging from 29 to 53%), resulting in a total of 988 CG species. Notably, 66% of these species (650) are already available for purchase. Additionally, we observed that many CG plants exhibit drought tolerance and require less fertilizer on average, with implications for long-term urban planning and climate adaptation. Collaborating with gardening experts, we present a selection of purchasable CG balcony plants for each federal state, highlighting the feasibility of CG even for individuals without gardens. With a multitude of declining plants amenable to gardening and the vital role of gardens as refuges and green corridors, CG holds substantial potential to catalyze transformative change in bending the curve of biodiversity loss.
Project description:In a field where structure has finally begun to have a real impact, a series of new structures over the last two years have further extended our understanding of some of the critical regulatory events of the complement system. Notably, information has begun to flow from larger assemblies of components which allow insight into the often transient assemblies critical to complement regulation at the cell surface. This review will summarise the key structures determined since the last International Complement Workshop and the insights these have given us, before highlighting some questions that still require molecular frameworks to drive understanding.
Project description:Few approaches exist for the stable and controllable synthesis of customized mucin glycoproteins for glycocalyx editing in eukaryotic cells. Taking advantage of custom gene synthesis and a biology-by-parts approach to cDNA construction, we build a library of swappable DNA bricks for mucin leader tags, membrane anchors, cytoplasmic motifs, and optical reporters, as well as codon-optimized native mucin repeats and newly designed domains for synthetic mucins. We construct a library of over 50 mucins, each with unique chemical, structural, and optical properties and describe how additional permutations could readily be constructed. We apply the library to explore sequence-specific effects on glycosylation for engineering of mucins. We find that the extension of the immature ?-GalNAc Tn-antigen to Core 1 and Core 2 glycan structures depends on the underlying peptide backbone sequence. Glycosylation could also be influenced through recycling motifs on the mucin cytoplasmic tail. We expect that the mucin parts inventory presented here can be broadly applied for glycocalyx research and mucin-based biotechnologies.