Unknown

Dataset Information

0

Synthesis of Novel Temperature- and pH-Sensitive ABA Triblock Copolymers P(DEAEMA-co-MEO₂MA-co-OEGMA)-b-PEG-b-P(DEAEMA-co-MEO₂MA-co-OEGMA): Micellization, Sol⁻Gel Transitions, and Sustained BSA Release.


ABSTRACT: Novel temperature- and pH-responsive ABA-type triblock copolymers, P(DEAEMA-co-MEO₂MA-co-OEGMA)-b-PEG-b-P(DEAEMA-co-MEO₂MA-co-OEGMA), composed of a poly(ethylene glycol) (PEG) middle block and temperature- and pH-sensitive outer blocks, were synthesized by atom transfer radical polymerization (ATRP). The composition and structure of the copolymer were characterized by ¹H NMR and gel permeation chromatography (GPC). The temperature- and pH-sensitivity, micellization, and the sol⁻gel transitions of the triblock copolymers in aqueous solutions were studied using transmittance measurements, surface tension, viscosity, fluorescence probe technique, dynamic light scattering (DLS), zeta-potential measurements, and transmission electron microscopy (TEM). The lower critical solution temperature (LCST) of the triblock copolymer, which contains a small amount of a weak base group, (N,N-diethylamino) ethyl methacrylate (DEAEMA), can be tuned precisely and reversibly by changing the solution pH. When the copolymer concentration was sufficiently high, increasing temperature resulted in the free-flowing solution transformation into a micellar gel. The sol-to-gel transition temperature (Tsol⁻gel) in aqueous solution will continue to decrease as solution concentration increases.

SUBMITTER: Han Y 

PROVIDER: S-EPMC6431942 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7332608 | biostudies-literature
| S-EPMC9076357 | biostudies-literature
| S-EPMC7441494 | biostudies-literature
| S-EPMC3478948 | biostudies-literature
| S-EPMC5456965 | biostudies-other
| S-EPMC6700528 | biostudies-literature
| S-EPMC3412061 | biostudies-literature
| S-EPMC9756960 | biostudies-literature
| S-EPMC6403756 | biostudies-literature
| S-EPMC4389683 | biostudies-literature