Ablation of interferon regulatory factor 4 in T cells induces "memory" of transplant tolerance that is irreversible by immune checkpoint blockade.
Ontology highlight
ABSTRACT: Achieving transplant tolerance remains the ultimate goal in the field of organ transplantation. We demonstrated previously that ablation of the transcription factor interferon regulatory factor 4 (IRF4) in T cells induced heart transplant acceptance by driving allogeneic CD4+ T cell dysfunction. Herein, we showed that heart-transplanted mice with T cell-specific IRF4 deletion were tolerant to donor-specific antigens and accepted the subsequently transplanted donor-type but not third-party skin allografts. Moreover, despite the rejection of the primary heart grafts in T cell-specific Irf4 knockout mice under immune checkpoint blockade, the establishment of donor-specific tolerance in these mice was unhindered. By tracking alloantigen-specific CD4+ T cells in vivo, we revealed that checkpoint blockade restored the expression levels of the majority of wild-type T cell-expressed genes in Irf4-deficient T cells on day 6 post-heart grafting, indicating the initial reinvigoration of Irf4-deficient T cells. Nevertheless, checkpoint blockade did not restore cell frequency, effector memory cell generation, and IFN-?/TNF-? production of Irf4-/- alloreactive T cells at day 30 post-heart grafting. Hence, targeting IRF4 represents a potential therapeutic strategy for driving intrinsic T cell dysfunction and achieving alloantigen-specific transplant tolerance.
SUBMITTER: Zhang H
PROVIDER: S-EPMC6440205 | biostudies-literature | 2019 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA