Unknown

Dataset Information

0

Effect of Low-Temperature Al2O3 ALD Coating on Ni-Rich Layered Oxide Composite Cathode on the Long-Term Cycling Performance of Lithium-Ion Batteries.


ABSTRACT: Conformal coating of nm-thick Al2O3 layers on electrode material is an effective strategy for improving the longevity of rechargeable batteries. However, solid understanding of how and why surface coatings work the way they do has yet to be established. In this article, we report on low-temperature atomic layer deposition (ALD) of Al2O3 on practical, ready-to-use composite cathodes of NCM622 (60% Ni), a technologically important material for lithium-ion battery applications. Capacity retention and performance of Al2O3-coated cathodes (?10 ALD growth cycles) are significantly improved over uncoated NCM622 reference cathodes, even under moderate cycling conditions. Notably, the Al2O3 surface shell is preserved after cycling in full-cell configuration for 1400 cycles as revealed by advanced electron microscopy and elemental mapping. While there are no significant differences in terms of bulk lattice structure and transition-metal leaching among the coated and uncoated NCM622 materials, the surface of the latter is found to be corroded to a much greater extent. In particular, detachment of active material from the secondary particles and side reactions with the electrolyte appear to lower the electrochemical activity, thereby leading to accelerated capacity degradation.

SUBMITTER: Neudeck S 

PROVIDER: S-EPMC6441043 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effect of Low-Temperature Al<sub>2</sub>O<sub>3</sub> ALD Coating on Ni-Rich Layered Oxide Composite Cathode on the Long-Term Cycling Performance of Lithium-Ion Batteries.

Neudeck Sven S   Mazilkin Andrey A   Reitz Christian C   Hartmann Pascal P   Janek Jürgen J   Brezesinski Torsten T  

Scientific reports 20190329 1


Conformal coating of nm-thick Al<sub>2</sub>O<sub>3</sub> layers on electrode material is an effective strategy for improving the longevity of rechargeable batteries. However, solid understanding of how and why surface coatings work the way they do has yet to be established. In this article, we report on low-temperature atomic layer deposition (ALD) of Al<sub>2</sub>O<sub>3</sub> on practical, ready-to-use composite cathodes of NCM622 (60% Ni), a technologically important material for lithium-io  ...[more]

Similar Datasets

| S-EPMC7163330 | biostudies-literature
| S-EPMC8452671 | biostudies-literature
| S-EPMC5494640 | biostudies-literature
| S-EPMC5456936 | biostudies-other
| S-EPMC7764293 | biostudies-literature
| S-EPMC9300204 | biostudies-literature
| S-EPMC8589951 | biostudies-literature
| S-EPMC6051211 | biostudies-literature
| S-EPMC6644733 | biostudies-literature
| S-EPMC8035182 | biostudies-literature