Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive hematodermic malignancy derived from plasmacytoid dendritic cell precursors. Despite advances in our understanding of tumor cell surface markers, the pathogenesis of BPDCN remains largely unknown. No standard or optimal treatments are available for BPDCN, and the prognosis is usually poor. We report herein a case of BPDCN that harbored multiple genetic mutations in epigenetic modifiers such as TET2 and ZRSR2. Genetic studies in patients with BPDCN may provide insights into the underlying pathogenesis, prediction of clinical prognosis, and development of better targeted therapeutics for this rare clinical entity.
Project description:The purpose of this study is to describe the clinical and prognostic features and to evaluate the outcome of different therapeutic approaches among patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN) who have been diagnosed and treated in different institutions. A total of 398 patients from 75 centers were included in the study. Treatment consisted of non-Hodgkin lymphoma (NHL)-like regimens in 129 (32.8%) patients and acute leukemia (AL)-like regimens in 113 (23.5%) patients. In 61 (15.5%) and 16 (4.1%) patients, chemotherapy was followed by allogeneic and autologous hematopoietic stem cell transplantation (HSCT), respectively. Twenty-seven (6.9%) patients received radiotherapy, 6 (1.5%) received new agents, and 62 (15.7%) received palliative care. After a median follow-up of 12 months, median overall survival (OS) was 18 months. Patients who received NHL/AL-like regimens, followed by allogeneic HSCT, had the best outcome; median OS was not reached. OS was 65 months for patients who underwent autologous HSCT; 18 months and 14 months, respectively, for those treated with AL-like and NHL-like regimens without consolidation; and 4 months for those receiving palliative care (P < .001). In BPDCN, chemotherapy with lymphoma- or AL-like regimens, followed by transplantation, represents the therapeutic strategy associated with the best outcome. Consolidation with allogeneic HSCT, when feasible, appears superior to autologous HSCT.
Project description:Oncogenesis and ontogeny of blastic plasmacytoid dendritic cell neoplasm (BPDCN) remain uncertain, between canonical plasmacytoid dendritic cells (pDCs) and AXL+ SIGLEC6+ DCs (AS-DCs). We compared 12 BPDCN to 164 acute leukemia by Affymetrix HG-U133 Plus 2.0 arrays: BPDCN were closer to B-cell acute lymphoblastic leukemia (ALL), with enrichment in pDC, B-cell signatures, vesicular transport, deubiquitination pathways, and AS-DC signatures, but only in some cases. Importantly, 1 T-cell ALL clustered with BPDCN, with compatible morphology, immunophenotype (cCD3+ sCD3- CD123+ cTCL1+ CD304+), and genetics. Many oncogenetic pathways are deregulated in BPDCN compared with normal pDC, such as cell-cycle kinases, and importantly, the transcription factor SOX4, involved in B ontogeny, pDC ontogeny, and cancer cell invasion. High-throughput sequencing (HaloPlex) showed myeloid mutations (TET2, 62%; ASXL1, 46%; ZRSR2, 31%) associated with lymphoid mutations (IKZF1), whereas single-nucleotide polymorphism (SNP) array (Affymetrix SNP array 6.0) revealed frequent losses (mean: 9 per patient) involving key hematological oncogenes (RB1, IKZF1/2/3, ETV6, NR3C1, CDKN2A/B, TP53) and immune response genes (IFNGR, TGFB, CLEC4C, IFNA cluster). Various markers suggest an AS-DC origin, but not in all patients, and some of these abnormalities are related to the leukemogenesis process, such as the 9p deletion, leading to decreased expression of genes encoding type I interferons. In addition, the AS-DC profile is only found in a subgroup of patients. Overall, the cellular ontogenic origin of BPDCN remains to be characterized, and these results highlight the heterogeneity of BPDCN, with a risk of a diagnostic trap.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive leukemia for which knowledge on disease mechanisms and effective therapies are currently lacking. Only a handful of recurring genetic mutations have been identified and none is specific to BPDCN. In this study, through molecular cloning in an index case that presented a balanced t(3;5)(q21;q31) and molecular cytogenetic analyses in a further 46 cases, we identify monoallelic deletion of NR3C1 (5q31), encoding the glucocorticoid receptor (GCR), in 13 of 47 (28%) BPDCN patients. Targeted deep sequencing in 36 BPDCN cases, including 10 with NR3C1 deletion, did not reveal NR3C1 point mutations or indels. Haploinsufficiency for NR3C1 defined a subset of BPDCN with lowered GCR expression and extremely poor overall survival (P = .0006). Consistent with a role for GCR in tumor suppression, functional analyses coupled with gene expression profiling identified corticoresistance and loss-of-EZH2 function as major downstream consequences of NR3C1 deletion in BPDCN. Subsequently, more detailed analyses of the t(3;5)(q21;q31) revealed fusion of NR3C1 to a long noncoding RNA (lncRNA) gene (lincRNA-3q) that encodes a novel, nuclear, noncoding RNA involved in the regulation of leukemia stem cell programs and G1/S transition, via E2F. Overexpression of lincRNA-3q was a consistent feature of malignant cells and could be abrogated by bromodomain and extraterminal domain (BET) protein inhibition. Taken together, this work points to NR3C1 as a haploinsufficient tumor suppressor in a subset of BPDCN and identifies BET inhibition, acting at least partially via lncRNA blockade, as a novel treatment option in BPDCN.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy for which there is still no effective therapy. In order to identify genetic alterations useful for a new treatment design, we used whole-exome sequencing to analyze 14 BPDCN patients and the patient-derived CAL-1 cell line. The functional enrichment analysis of mutational data reported the epigenetic regulatory program to be the most significantly undermined (P<0.0001). In particular, twenty-five epigenetic modifiers were found mutated (e.g. ASXL1, TET2, SUZ12, ARID1A, PHF2, CHD8); ASXL1 was the most frequently affected (28.6% of cases). To evaluate the impact of the identified epigenetic mutations at the gene-expression and Histone H3 lysine 27 trimethylation/acetylation levels, we performed additional RNA and pathology tissue-chromatin immunoprecipitation sequencing experiments. The patients displayed enrichment in gene signatures regulated by methylation and modifiable by decitabine administration, shared common H3K27-acetylated regions, and had a set of cell-cycle genes aberrantly up-regulated and marked by promoter acetylation. Collectively, the integration of sequencing data showed the potential of a therapy based on epigenetic agents. Through the adoption of a preclinical BPDCN mouse model, established by CAL-1 cell line xenografting, we demonstrated the efficacy of the combination of the epigenetic drugs 5'-azacytidine and decitabine in controlling disease progression in vivo.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of leukemia/lymphoma, whose diagnosis can be difficult to achieve due to its clinical and biological heterogeneity, as well as its overlapping features with other hematologic malignancies. In this study we investigated whether the association between the maturational stage of tumor cells and the clinico-biological and prognostic features of the disease, based on the analysis of 46 BPDCN cases classified into three maturation-associated subgroups on immunophenotypic grounds. Our results show that blasts from cases with an immature plasmacytoid dendritic cell (pDC) phenotype exhibit an uncommon CD56- phenotype, coexisting with CD34+ non-pDC tumor cells, typically in the absence of extramedullary (e.g. skin) disease at presentation. Conversely, patients with a more mature blast cell phenotype more frequently displayed skin/extramedullary involvement and spread into secondary lymphoid tissues. Despite the dismal outcome, acute lymphoblastic leukemia-type therapy (with central nervous system prophylaxis) and/or allogeneic stem cell transplantation appeared to be the only effective therapies. Overall, our findings indicate that the maturational profile of pDC blasts in BPDCN is highly heterogeneous and translates into a wide clinical spectrum -from acute leukemia to mature lymphoma-like behavior-, which may also lead to variable diagnosis and treatment.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare CD4+ CD56+ myeloid malignancy that is challenging to diagnose and treat. BPDCN typically presents with nonspecific cutaneous lesions with or without extra-cutaneous manifestations before progressing to leukemia. Currently, there is no standard of care for the treatment of BPDCN and various approaches have been used including acute myeloid leukemia, acute lymphoblastic leukemia, and lymphoma-based regimens with or without stem cell transplantation. Despite these treatment approaches, the prognosis of BPDCN remains poor and there is a lack of prospective data upon which to base treatment decisions. Recent work examining the mutational landscape and gene expression profiles of BPDCN has identified a number of potential therapeutic targets. One such target is CD123, the ? subunit of the human interleukin-3 receptor, which is the subject of intervention studies using the novel agent SL-401. Other investigational therapies include UCART123, T-cell immunotherapy, and venetoclax. Prospective trials are needed to determine the best treatment for this uncommon and aggressive neoplasm.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive haematological malignancy in the elderly, with a high frequency of cutaneous and bone marrow involvement and poor prognosis. We report a case of BPDCN with classic presentation and discuss its treatment and the value of different investigation tools used in diagnosis and response assessment.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a hematologic malignancy believed to originate from plasmacytoid dendritic cells (pDCs), the immune cells responsible for producing type 1 interferons during infection. Nearly all patients with BPDCN have prominent skin involvement, with cutaneous infiltration occupying the dermis and subcutis. One half of patients present with BPDCN cells only in the skin, with no evidence of disease elsewhere. Because normal pDCs are rare or absent in cutaneous sites, and they only traffic to the skin after activation by pathogen or inflammation, our aim was to determine if a microorganism is associated with BPDCN. We performed RNA sequencing in BPDCN skin and bone marrow, with cutaneous T-cell lymphoma (CTCL) and normal skin as controls. GATK-PathSeq was used to identify known microbial sequences. Bacterial reads in BPDCN skin were components of normal flora and did not distinguish BPDCN from controls. We then developed a new computational tool, virID (Viral Identification and Discovery; https://github.com/jnoms/virID), for identification of microbial-associated reads remaining unassigned after GATK-PathSeq. We found no evidence for a known or novel virus in BPDCN skin or bone marrow, despite confirming that virID could identify Merkel cell polyomavirus in Merkel cell carcinoma, human papillomavirus in head and neck squamous cell carcinoma, and Kaposi's sarcoma herpesvirus in Kaposi's sarcoma in a blinded fashion. Thus, at the level of sensitivity used here, we found no clear pathogen linked to BPDCN.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and clinically challenging hematologic malignancy with dismal outcomes. With a median age of ?70 years, the majority of patients with BPDCN have experienced historically suboptimal responses with intensive chemotherapy regimens. The major scientific breakthrough in this field was the recognition of overexpression of a surface receptor, CD123/interleukin 3 (IL-3) receptor ?, in all patients. Importantly, a novel therapeutic agent consisting of a truncated diphtheria toxin (DT) payload fused to recombinant human IL-3 was being developed, one that targeted CD123, initially known as DT-IL-3 (later known as SL401; tagraxofusp; tagraxofusp-erzs [Elzonris]). The identification of this agent, and subsequent clinical trials specifically dedicated to patients with BPDCN (including a pilot study, followed by a larger phase 1/2 multicenter study [90% overall response rate [ORR] in frontline and 67% ORR in relapsed/refractory setting]), in part led to approval of tagraxofusp-erzs on 21 December 2018. Tagraxofusp-erzs was the first agent approved for BPDCN (for patients ages 2 years and older), and importantly, established this drug as the first CD123-targeted agent ever approved. The most notable toxicity of tagraxofusp-erzs is occurrence of the capillary leak syndrome, which occurs frequently at all grades, and has also been observed to be life-threatening, appropriately leading to a US Food and Drug Administration "black box" warning in the package insert. The preclinical and clinical aspects of drug development of tagraxofusp-erzs as monotherapy leading to drug approval are reviewed herein, with discussion of future directions of this novel agent, including consideration for rational combinations in BPDCN and beyond.