Unknown

Dataset Information

0

Magnetic resonance imaging of the time course of hyperpolarized 129Xe gas exchange in the human lungs and heart.


ABSTRACT: PURPOSE:To perform magnetic resonance imaging (MRI), human lung imaging, and quantification of the gas-transfer dynamics of hyperpolarized xenon-129 (HPX) from the alveoli into the blood plasma. MATERIALS AND METHODS:HPX MRI with iterative decomposition of water and fat with echo asymmetry and least-square estimation (IDEAL) approach were used with multi-interleaved spiral k-space sampling to obtain HPX gas and dissolved phase images. IDEAL time-series images were then obtained from ten subjects including six normal subjects and four patients with pulmonary emphysema to test the feasibility of the proposed technique for capturing xenon-129 gas-transfer dynamics (XGTD). The dynamics of xenon gas diffusion over the entire lung was also investigated by measuring the signal intensity variations between three regions of interest, including the left and right lungs and the heart using Welch's t test. RESULTS:The technique enabled the acquisition of HPX gas and dissolved phase compartment images in a single breath-hold interval of 8 s. The y-intersect of the XGTD curves were also found to be statistically lower in the patients with lung emphysema than in the healthy group (p?

SUBMITTER: Doganay O 

PROVIDER: S-EPMC6443604 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Magnetic resonance imaging of the time course of hyperpolarized <sup>129</sup>Xe gas exchange in the human lungs and heart.

Doganay Ozkan O   Chen Mitchell M   Matin Tahreema T   Rigolli Marzia M   Phillips Julie-Ann JA   McIntyre Anthony A   Gleeson Fergus V FV  

European radiology 20181205 5


<h4>Purpose</h4>To perform magnetic resonance imaging (MRI), human lung imaging, and quantification of the gas-transfer dynamics of hyperpolarized xenon-129 (HPX) from the alveoli into the blood plasma.<h4>Materials and methods</h4>HPX MRI with iterative decomposition of water and fat with echo asymmetry and least-square estimation (IDEAL) approach were used with multi-interleaved spiral k-space sampling to obtain HPX gas and dissolved phase images. IDEAL time-series images were then obtained fr  ...[more]

Similar Datasets

| S-EPMC1838742 | biostudies-literature
| S-EPMC7554935 | biostudies-literature
| S-EPMC3905697 | biostudies-literature
| S-EPMC4083556 | biostudies-literature
| S-EPMC3599631 | biostudies-literature
| S-EPMC5226623 | biostudies-literature