Project description:BACKGROUND:MRI of hyperpolarized 129 Xenon (HP 129 Xe) is increasingly utilized for investigating pulmonary function. The solubility of HP 129 Xe in lung tissue, blood plasma (Barrier), and red blood cells (RBC), with unique chemical shifts, enables spectroscopic imaging of potential imaging biomarkers of gas exchange and microstructural pulmonary physiology. PURPOSE:To quantify global average and regional repeatability of Barrier:gas, RBC:gas, and RBC:Barrier ratios derived from dissolved-phase 129 Xe imaging and their dependence on intervisit changes in lung inflation volume. STUDY TYPE:Prospective. POPULATION:Fourteen healthy volunteers. One subject was unable to complete the study resulting in 13 subjects for analysis (eight female, five male, ages 24-69, 53.8 ± 13.9). FIELD STRENGTH:1.5T. ASSESSMENT:Subjects were imaged using a 3D radial 1-point Dixon method to separate Barrier and RBC component signals, at two different timepoints, with ~1 month between visits. RBC:Gas, Barrier:Gas, and RBC:Barrier measures were compared across time and with pulmonary function tests (PFTs). STATISTICAL TESTS:Repeatablilty was quantified using Bland-Altman plots, coefficient of repeatability, coefficient of variation (CV), and intraclass correlation coefficients (ICCs). Dependence of imaging measures on PFTs and lung volume was evaluated using Spearman and Pearson correlation coefficients, respectively. Statistical significance was determined by F-test for intraclass correlations, and t-test for Spearman correlations and regression. RESULTS:Mean RBC:Gas, Barrier:Gas, and RBC:Barrier had CVs of 19.2%, 20.0%, and 11.5%, respectively, and had significant ICCs, equal to 0.78, 0.79, and 0.92, respectively. Intervisit differences in RBC:Barrier were significantly correlated with intervisit differences in DLCO (r = 0.93, P = 0.007). Significant correlations with intervisit lung volume differences and intervisit differences in mean RBC:Gas (r = -0.73, P = 0.005) and Barrier:Gas (r = -0.69, P = 0.009) were found. DATA CONCLUSION:Three commonly used 129 Xe MRI-based measures of gas-exchange show good repeatability, particularly the Barrier:RBC ratio, which did not depend on lung inflation volume and was strongly associated with intervisit changes in DLCO . LEVEL OF EVIDENCE:1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:1182-1190.
Project description:G protein-coupled receptors can adopt many different conformational states, each of them exhibiting different restraints towards downstream signaling pathways. One promising strategy to identify and quantify this conformational landscape is to introduce a cysteine at a receptor site sensitive to different states and label this cysteine with a probe for detection. Here, the application of NMR of hyperpolarized 129Xe for the detection of the conformational states of human neuropeptide Y2 receptor is introduced. The xenon trapping cage molecule cryptophane-A attached to a cysteine in extracellular loop 2 of the receptor facilitates chemical exchange saturation transfer experiments without and in the presence of native ligand neuropeptide Y. High-quality spectra indicative of structural states of the receptor-cage conjugate were obtained. Specifically, five signals could be assigned to the conjugate in the apo form. After the addition of NPY, one additional signal and subtle modifications in the persisting signals could be detected. The correlation of the spectroscopic signals and structural states was achieved with molecular dynamics simulations, suggesting frequent contact between the xenon trapping cage and the receptor surface but a preferred interaction with the bound ligand.
Project description:Introduction: The ideal contrast agents for ventilation SPECT and MRI are Technegas and 129Xe gas, respectively. Despite increasing interest in the clinical utility of ventilation imaging, these modalities have not been directly compared. Therefore, our objective was to compare the ventilation defect percent (VDP) assessed by Technegas SPECT and hyperpolarized 129Xe MRI in patients scheduled to undergo lung cancer resection with and without pre-existing obstructive lung disease. Methods: Forty-one adults scheduled to undergo lung cancer resection performed same-day Technegas SPECT, hyperpolarized 129Xe MRI, spirometry, and diffusing capacity of the lung for carbon monoxide (DLCO). Ventilation abnormalities were quantified as the VDP using two different methods: adaptive thresholding (VDPT) and k-means clustering (VDPK). Correlation and agreement between VDP quantified by Technegas SPECT and 129Xe MRI were determined by Spearman correlation and Bland-Altman analysis, respectively. Results: VDP measured by Technegas SPECT and 129Xe MRI were correlated (VDPT: r = 0.48, p = 0.001; VDPK: r = 0.63, p < 0.0001). A 2.0% and 1.6% bias towards higher Technegas SPECT VDP was measured using the adaptive threshold method (VDPT: 23.0% ± 14.0% vs. 21.0% ± 5.2%, p = 0.81) and k-means method (VDPK: 9.4% ± 9.4% vs. 7.8% ± 10.0%, p = 0.02), respectively. For both modalities, higher VDP was correlated with lower FEV1/FVC (SPECT VDPT: r = -0.38, p = 0.01; MRI VDPK: r = -0.46, p = 0.002) and DLCO (SPECT VDPT: r = -0.61, p < 0.0001; MRI VDPK: r = -0.68, p < 0.0001). Subgroup analysis revealed that VDP measured by both modalities was significantly higher for participants with COPD (n = 13) than those with asthma (n = 6; SPECT VDPT: p = 0.007, MRI VDPK: p = 0.006) and those with no history of obstructive lung disease (n = 21; SPECT VDPT: p = 0.0003, MRI VDPK: p = 0.0003). Discussion: The burden of ventilation defects quantified by Technegas SPECT and 129Xe MRI VDP was correlated and greater in participants with COPD when compared to those without. Our observations indicate that, despite substantial differences between the imaging modalities, quantitative assessment of ventilation defects by Technegas SPECT and 129Xe MRI is comparable.
Project description:Fast apparent transverse relaxation (short T2 *) is a common obstacle when attempting to perform quantitative 1 H MRI of the lungs. While T2 * times are longer for pulmonary hyperpolarized (HP) gas functional imaging (in particular for gaseous 129 Xe), T2 * can still lead to quantitative inaccuracies for sequences requiring longer echo times (such as diffusion weighted images) or longer readout duration (such as spiral sequences). This is especially true in preclinical studies, where high magnetic fields lead to shorter relaxation times than are typically seen in human studies. However, the T2 * of HP 129 Xe in the most common animal model of human disease (mice) has not been reported. Herein, we present a multi-echo radial flyback imaging sequence and use it to measure HP 129 Xe T2 * at 7 T under a variety of respiratory conditions. This sequence mitigates the impact of T1 relaxation outside the animal by using multiple gradient-refocused echoes to acquire images at a number of effective echo times for each RF excitation. After validating the sequence using a phantom containing water doped with superparamagnetic iron oxide nanoparticles, we measured the 129 Xe T2 * in vivo for 10 healthy C57Bl/6 J mice and found T2 * ~ 5 ms in the lung airspaces. Interestingly, T2 * was relatively constant over all experimental conditions, and varied significantly with sex, but not age, mass, or the O2 content of the inhaled gas mixture. These results are discussed in the context of T2 * relaxation within porous media.
Project description:PurposeThe MR properties (chemical shifts and R2∗ decay rates) of dissolved-phase hyperpolarized (HP) 129 Xe are confounded by the large magnetic field inhomogeneity present in the lung. This work improves measurements of these properties using a model-based image reconstruction to characterize the R2∗ decay rates of dissolved-phase HP 129 Xe in healthy subjects and patients with idiopathic pulmonary fibrosis (IPF).MethodsWhole-lung MRS and 3D radial MRI with four gradient echoes were performed after inhalation of HP 129 Xe in healthy subjects and patients with IPF. A model-based image reconstruction formulated as a regularized optimization problem was solved iteratively to measure regional signal intensity in the gas, barrier, and red blood cell (RBC) compartments, while simultaneously measuring their chemical shifts and R2∗ decay rates.ResultsThe estimation of spectral properties reduced artifacts in images of HP 129 Xe in the gas, barrier, and RBC compartments and improved image SNR by over 20%. R2∗ decay rates of the RBC and barrier compartments were lower in patients with IPF compared to healthy subjects (P < 0.001 and P = 0.005, respectively) and correlated to DLCO (R = 0.71 and 0.64, respectively). Chemical shift of the RBC component measured with whole-lung spectroscopy was significantly different between IPF and normal subjects (P = 0.022).ConclusionEstimates for R2∗ in both barrier and RBC dissolved-phase HP 129 Xe compartments using a regional signal model improved image quality for dissolved-phase images and provided additional biomarkers of lung injury in IPF.
Project description:Spin exchange between different chemical environments is an important observable for characterizing chemical exchange kinetics in various contexts, including protein folding, chelation chemistry, and host-guest interactions. Such spins experience effective spin-spin relaxation rate, R 2,eff, that typically shows a dispersive behavior which requires detailed analysis. Here, we describe a class of highly simplified R 2,eff behavior by relying on hyperpolarized 129Xe as a freely exchanging ligand reporter. It provides large chemical shift separations that yield reduced expressions of both the Swift-Connick and the Carver-Richards treatment of exchange-induced relaxation. Despite observing a diamagnetic system, R 2,eff is dominated by large Larmor frequency jumps and thus allows detection of otherwise inaccessible analyte concentrations with a single spin echo train (only 0.01% of the overall hyperpolarized spins need to be transiently bound to the molecule). The two Xe hosts cryptophane-A monoacid (CrA-ma) and cucurbit[6]uril (CB6) represent two exemplary families of container molecules (the latter one also serving as drug delivery vehicles) that act as highly efficient phase shifters for which we observed unprecedented exchange-induced relaxivity r 2 (up to 866 s-1 mM-1). By including methods of spatial encoding, multiple data points can be collected simultaneously to isolate the exchange contribution and determine the effective exchange rate in partially occupied binding sites with a single delivery of hyperpolarized nuclei. The relaxivity is directly related to the guest turnover in these systems and temperature-dependent measurements yield an activation energy of E A = 41 kJ mol-1 for Xe@CrA-ma from simple relaxometry analysis. The concept is transferable to many applications where Xe is known to exhibit large chemical shifts.
Project description:Low thermal-equilibrium nuclear spin polarizations and the need for sophisticated instrumentation render conventional nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) incompatible with small-scale microfluidic devices. Hyperpolarized 129Xe gas has found use in the study of many materials but has required very large and expensive instrumentation. Recently a microfabricated device with modest instrumentation demonstrated all-optical hyperpolarization and detection of 129Xe gas. This device was limited by 129Xe polarizations less than 1%, 129Xe NMR signals smaller than 20 nT, and transport of hyperpolarized 129Xe over millimeter lengths. Higher polarizations, versatile detection schemes, and flow of 129Xe over larger distances are desirable for wider applications. Here we demonstrate an ultra-sensitive microfabricated platform that achieves 129Xe polarizations reaching 7%, NMR signals exceeding 1 μT, lifetimes up to 6 s, and simultaneous two-mode detection, consisting of a high-sensitivity in situ channel with signal-to-noise of 105 and a lower-sensitivity ex situ detection channel which may be useful in a wider variety of conditions. 129Xe is hyperpolarized and detected in locations more than 1 cm apart. Our versatile device is an optimal platform for microfluidic magnetic resonance in particular, but equally attractive for wider nuclear spin applications benefitting from ultra-sensitive detection, long coherences, and simple instrumentation.
Project description:The recovery process of COVID-19 patients is unclear. Some recovered patients complain of continued shortness of breath. Vasculopathy has been reported in COVID-19, stressing the importance of probing microstructure and function of lungs at the alveolar-capillary interface. While CT detects structural abnormalities, little is known about the impact of disease on lung function. 129Xe MRI is a technique uniquely capable of assessing ventilation, microstructure and gas exchange. Using 129Xe MRI, we found COVID-19 patients have higher ventilation defects percentage (5.9% vs 3.7%), unchanged microstructure, longer gas-blood exchange time (43.5 ms vs 32.5 ms), and reduced RBC/TP (0.279 vs 0.330) compared with healthy subjects. These findings suggest regional ventilation and alveolar airspace dimensions are relatively normal around the time of discharge, while gas-blood exchange function is diminished. This study establishes the feasibility of localized lung function measurement in COVID-19 patients. Such readouts could be useful as a supplement to structural imaging.
Project description:Previously, we reported hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR techniques for the ultrasensitive (i.e., 1 picomolar) detection of xenon host molecules known as cryptophane. Here, we demonstrate a more general role for Hyper-CEST NMR as a spectroscopic method for probing nanoporous structures, without the requirement for cryptophane or engineered xenon-binding sites. Hyper-CEST 129Xe NMR spectroscopy was employed to detect Bacillus anthracis and Bacillus subtilis spores in solution, and interrogate the layers that comprise their structures. 129Xe-spore samples were selectively irradiated with radiofrequency pulses; the depolarized 129Xe returned to aqueous solution and depleted the 129Xe-water signal, providing measurable contrast. Removal of the outermost spore layers in B. anthracis and B. subtilis (the exosporium and coat, respectively) enhanced 129Xe exchange with the spore interior. Notably, the spores were invisible to hyperpolarized 129Xe NMR direct detection methods, highlighting the lack of high-affinity xenon-binding sites, and the potential for extending Hyper-CEST NMR structural analysis to other biological and synthetic nanoporous structures.