Flexible, transparent patterned electrodes based on graphene oxide/silver nanowire nanocomposites fabricated utilizing an accelerated ultraviolet/ozone process to control silver nanowire degradation.
Ontology highlight
ABSTRACT: We developed flexible, transparent patterned electrodes, which were fabricated utilizing accelerated ultraviolet/ozone (UV/O3)-treated graphene oxide (GO)/silver nanowire (Ag-NW) nanocomposites via a simple, low-cost pattern process to investigate the feasibility of promising applications in flexible/wearable electronic and optoelectronic devices. The UV/O3 process of the GO/Ag-NW electrode was accelerated by the pre-heat treatment, and the degradation interruption of Ag NWs was removed by the GO treatment. After the deposition of the GO-treated Ag NW electrodes, the sheet resistance of the thermally annealed GO-treated Ag-NW electrodes was significantly increased by using the UV/O3 treatment, resulting in a deterioration of the GO-treated Ag NWs in areas exposed to the UV/O3 treatment. The degradation of the Ag NWs caused by the UV/O3 treatment was confirmed by using the sheet resistances, scanning electron microscopy images, X-ray photoelectron microscopy spectra, and transmittance spectra. While the sheet resistance of the low-density Ag-NW electrode was considerably increased due to the pre-thermal treatment at 90?°C for 10?min, that of the high-density Ag-NW electrode did not vary significantly even after a UV/O3 treatment for a long time. The degradation interference phenomenon caused by the UV/O3 treatment in the high-density Ag NWs could be removed by using a GO treatment, which resulted in the formation of a Ag-NW electrode pattern suitable for promising applications in flexible organic light-emitting devices. The GO treatment decreased the sheet resistance of the Ag-NW electrode and enabled the pattern to be formed by using the UV/O3 treatment. The selective degradation of Ag NWs due to UV/O3 treatment decreased the transparency of the Ag-NW electrode by about 8% and significantly increased its sheet resistance more than 100 times.
SUBMITTER: Choo DC
PROVIDER: S-EPMC6445337 | biostudies-literature | 2019 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA