Unknown

Dataset Information

0

Temporal multivariate pattern analysis (tMVPA): A single trial approach exploring the temporal dynamics of the BOLD signal.


ABSTRACT:

Background

fMRI provides spatial resolution that is unmatched by non-invasive neuroimaging techniques. Its temporal dynamics however are typically neglected due to the sluggishness of the hemodynamic signal.

New methods

We present temporal multivariate pattern analysis (tMVPA), a method for investigating the temporal evolution of neural representations in fMRI data, computed on single-trial BOLD time-courses, leveraging both spatial and temporal components of the fMRI signal. We implemented an expanding sliding window approach that allows identifying the time-window of an effect.

Results

We demonstrate that tMVPA can successfully detect condition-specific multivariate modulations over time, in the absence of mean BOLD amplitude differences. Using Monte-Carlo simulations and synthetic data, we quantified family-wise error rate (FWER) and statistical power. Both at the group and single-subject levels, FWER was either at or significantly below 5%. We reached the desired power with 18 subjects and 12 trials for the group level, and with 14 trials in the single-subject scenario.

Comparison with existing methods

We compare the tMVPA statistical evaluation to that of a linear support vector machine (SVM). SVM outperformed tMVPA with large N and trial numbers. Conversely, tMVPA, leveraging on single trials analyses, outperformed SVM in low N and trials and in a single-subject scenario.

Conclusion

Recent evidence suggesting that the BOLD signal carries finer-grained temporal information than previously thought, advocates the need for analytical tools, such as tMVPA, tailored to investigate BOLD temporal dynamics. The comparable performance between tMVPA and SVM, a powerful and reliable tool for fMRI, supports the validity of our technique.

SUBMITTER: Vizioli L 

PROVIDER: S-EPMC6447290 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5118793 | biostudies-literature
| S-EPMC7200672 | biostudies-literature
| S-EPMC4617410 | biostudies-literature
| S-EPMC3208150 | biostudies-literature
| S-EPMC5714382 | biostudies-literature
| S-EPMC4617762 | biostudies-literature
| S-EPMC6148359 | biostudies-literature
| S-EPMC10119111 | biostudies-literature
| S-EPMC6934324 | biostudies-literature
| S-EPMC8568270 | biostudies-literature