Chromogranin A regulates neuroblastoma proliferation and phenotype.
Ontology highlight
ABSTRACT: Neuroblastoma is a commonly encountered solid tumor in early childhood with high neuroplasticity, and differentiation therapy is hypothesized to lead to tumor mass shrinkage and/or symptom relief. CgA is a tissue specific protein restricted to the diffuse neuroendocrine system, and widely expressed in neuroblastomas. Using knockdown and knockout approaches to deplete CgA levels, we demonstrated that CgA loss inhibits SH-SY5Y cell proliferation and leads to a morphological shift with increased expression of Schwann and extracellular matrix specific molecules, and suppression of chromaffin features. We further confirmed the effects of CgA in a series of neuroblastoma cells with [BE(2)-M17 and IMR-32] and without (SK-N-SH) N-Myc amplification. We demonstrated that CgA depletion reduced IGF-II and IGFBP-2 expression, increased IGFBP-3 levels, and suppresses IGF downstream signaling as evidenced by reduced AKT/ERK pathway activation. This was further supported by an increased anti-proliferative effect of the ERK inhibitor in the CgA depleted cells. In an in vivo xenograft neuroblastoma model, CgA knockdown led to increased S-phenotypic marker expression at both protein and mRNA levels. Together these results suggest that CgA maintains IGF secretion and intracellular signaling to regulate proliferation and differentiation in neuroblastomas.
SUBMITTER: Zhang D
PROVIDER: S-EPMC6451332 | biostudies-literature | 2019 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA