Project description:Chronic Chagas cardiomyopathy (CCC) is the most frequent and severe clinical form of chronic Chagas disease, representing one of the leading causes of morbidity and mortality in Latin America, and a growing global public health problem. There is currently no approved treatment for CCC; however, omics technologies have enabled significant progress to be made in the search for new therapeutic targets. The metabolic alterations associated with pathogenic mechanisms of CCC and their relationship to cellular and immunopathogenic processes in cardiac tissue remain largely unknown. This exploratory study aimed to evaluate the potential underlying pathogenic mechanisms in the failing myocardium of patients with end-stage heart failure (ESHF) secondary to CCC by applying an untargeted metabolomic profiling approach. Cardiac tissue samples from the left ventricle of patients with ESHF of CCC etiology (n = 7) and healthy donors (n = 7) were analyzed using liquid chromatography-mass spectrometry. Metabolite profiles showed altered branched-chain amino acid and acylcarnitine levels, decreased fatty acid uptake and oxidation, increased activity of the pentose phosphate pathway, dysregulation of the TCA cycle, and alterations in critical cellular antioxidant systems. These findings suggest processes of energy deficit, alterations in substrate availability, and enhanced production of reactive oxygen species in the affected myocardium. This profile potentially contributes to the development and maintenance of a chronic inflammatory state that leads to progression and severity of CCC. Further studies involving larger sample sizes and comparisons with heart failure patients without CCC are needed to validate these results, opening an avenue to investigate new therapeutic approaches for the treatment and prevention of progression of this unique and severe cardiomyopathy.
Project description:Physicians working in Europe and the United States should suspect Chagas heart failure in every patient coming from Latin America with chronic heart failure. Diagnosis should be confirmed by positive serology. Right bundle branch block and left anterior fascicular block on 12-lead electrocardiogram, enlarged cardiac silhouette with no pulmonary congestion on chest X-ray and left ventricular apical aneurysm on echocardiography are the distinctive features of this condition. The clinical course is poorer than that of non-Chagas heart failure; however, medical treatment is similar. Implantable cardioverter-defibrillators are useful in the primary and secondary prevention of sudden cardiac death. Cardiac resynchronisation therapy can be given to patients on optimal medical therapy and with lengthened QRS complex. Heart transplantation is the treatment of choice for patients with end-stage Chagas heart failure.
Project description:BackgroundChronic Chagas cardiomyopathy (CCC) constitutes the most life-threatening consequence of the Trypanosoma cruzi infection. Our goal was to test in CCC the associations of the myocardial tissue phenotype with cardiac dysfunction, and heart failure (HF) severity, using cardiac magnetic resonance (CMR).MethodsWe performed a prospective observational cohort of patients with consecutive CCC with a CMR protocol, including ventricular function, myocardial T1, and late gadolinium enhancement (LGE). Extracellular volume (ECV), and intracellular water lifetime, τic, a measure of cardiomyocyte diameter, were compared to CCC disease progression, including Rassi score and New York Heart Association (NYHA) class. An exploratory prognostic analysis was performed to investigate the association of both ECV and τic with CV death.ResultsA total of 37 patients with intermediate-to-high-risk CCC were enrolled (Chagas Rassi score ≥7, mean left ventricle (LV) ejection fraction (EF) 32 ± 16%). Myocardial ECV (0.40 ± 0.07) was correlated with Rassi score (r = 0.43; P = 0.009), higher NYHA class, and LV EF (r = -0.51; P = 0.0015). τic decreased linearly with NYHA class (P = 0.007 for non-parametric test of linear trend) and showed a positive association with LV EF (r = 0.47; P = 0.004). Over a median follow-up of 734 days (range: 6-2,943 days), CV death or cardiac transplantation occurred in 10 patients. The Rassi score (heart rate [HR] = 1.3; 95% CI = [1.0, 1.8]; P = 0.028) and ECV (HR = 3.4 for 0.1 change, 95% CI = [1.1, 11.0], P = 0.039) were simultaneously associated with CV death.ConclusionIn patients with intermediate-to-high-risk CCC, an expanded ECV and regression of cardiomyocyte diameter were associated with worsening systolic function and HF severity, respectively. The exploratory analysis indicates that ECV may have a prognostic value to identify patients with CCC at a higher risk for cardiovascular events.
Project description:BackgroundPatients with dilated cardiomyopathy whose symptoms and cardiac function have recovered often ask whether their medications can be stopped. The safety of withdrawing treatment in this situation is unknown.MethodsWe did an open-label, pilot, randomised trial to examine the effect of phased withdrawal of heart failure medications in patients with previous dilated cardiomyopathy who were now asymptomatic, whose left ventricular ejection fraction (LVEF) had improved from less than 40% to 50% or greater, whose left ventricular end-diastolic volume (LVEDV) had normalised, and who had an N-terminal pro-B-type natriuretic peptide (NT-pro-BNP) concentration less than 250 ng/L. Patients were recruited from a network of hospitals in the UK, assessed at one centre (Royal Brompton and Harefield NHS Foundation Trust, London, UK), and randomly assigned (1:1) to phased withdrawal or continuation of treatment. After 6 months, patients in the continued treatment group had treatment withdrawn by the same method. The primary endpoint was a relapse of dilated cardiomyopathy within 6 months, defined by a reduction in LVEF of more than 10% and to less than 50%, an increase in LVEDV by more than 10% and to higher than the normal range, a two-fold rise in NT-pro-BNP concentration and to more than 400 ng/L, or clinical evidence of heart failure, at which point treatments were re-established. The primary analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT02859311.FindingsBetween April 21, 2016, and Aug 22, 2017, 51 patients were enrolled. 25 were randomly assigned to the treatment withdrawal group and 26 to continue treatment. Over the first 6 months, 11 (44%) patients randomly assigned to treatment withdrawal met the primary endpoint of relapse compared with none of those assigned to continue treatment (Kaplan-Meier estimate of event rate 45·7% [95% CI 28·5-67·2]; p=0·0001). After 6 months, 25 (96%) of 26 patients assigned initially to continue treatment attempted its withdrawal. During the following 6 months, nine patients met the primary endpoint of relapse (Kaplan-Meier estimate of event rate 36·0% [95% CI 20·6-57·8]). No deaths were reported in either group and three serious adverse events were reported in the treatment withdrawal group: hospital admissions for non-cardiac chest pain, sepsis, and an elective procedure.InterpretationMany patients deemed to have recovered from dilated cardiomyopathy will relapse following treatment withdrawal. Until robust predictors of relapse are defined, treatment should continue indefinitely.FundingBritish Heart Foundation, Alexander Jansons Foundation, Royal Brompton Hospital and Imperial College London, Imperial College Biomedical Research Centre, Wellcome Trust, and Rosetrees Trust.
Project description:Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy occurring in 30% of the 6 million infected with the protozoan Trypanosoma cruzi in Latin America. Survival is significantly lower in CCC than ischemic (IC) and idiopathic dilated cardiomyopathy (DCM). Previous studies disclosed a selective decrease in mitochondrial ATP synthase alpha expression and creatine kinase activity in CCC myocardium as compared to IDC and IC, as well as decreased in vivo myocardial ATP production. Aiming to identify additional constraints in energy metabolism specific to CCC, we performed a proteomic study in myocardial tissue samples from CCC, IC and DCM obtained at transplantation, in comparison with control myocardial tissue samples from organ donors. Left ventricle free wall myocardial samples were subject to two-dimensional electrophoresis with fluorescent labeling (2D-DIGE) and protein identification by mass spectrometry. We found altered expression of proteins related to mitochondrial energy metabolism, cardiac remodeling, and oxidative stress in the 3 patient groups. Pathways analysis of proteins differentially expressed in CCC disclosed mitochondrial dysfunction, fatty acid metabolism and transmembrane potential of mitochondria. CCC patients' myocardium displayed reduced expression of 22 mitochondrial proteins belonging to energy metabolism pathways, as compared to 17 in DCM and 3 in IC. Significantly, 6 beta-oxidation enzymes were reduced in CCC, while only 2 of them were down-regulated in DCM and 1 in IC. We also observed that the cytokine IFN-gamma, previously described with increased levels in CCC, reduces mitochondrial membrane potential in cardiomyocytes. Results suggest a major reduction of mitochondrial energy metabolism and mitochondrial dysfunction in CCC myocardium which may be in part linked to IFN-gamma. This may partially explain the worse prognosis of CCC as compared to DCM or IC.
Project description:End stage heart failure due to ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) have similar characteristics, enlargement of the ventricles, relatively thin-walled ventricle, which leads to a limited contraction force and blood loading. Nevertheless, the response for present therapeutics is very variable and the prognosis is still very bad for ICM and DCM in general. Thus, the ability to differentiate the etiologies of heart failure based structural and physiological changes of the heart would be a step forward to enhance the specificity and the success of given therapy.
Project description:Chagas disease, originally a South American endemic health problem, is expanding worldwide because of people migration. Its main impact is on the cardiovascular system, producing myocardial damage that frequently results in heart failure. Pathogenic pathways are mainly related to inmunoinflamatory reactions in the myocardium and, less frequently, in the gastrointestinal tract. The heart usually shows fibrosis, producing dilatation and damage of the electrogenic cardiac system. These changes result in cardiomyopathy with heart failure and frequent cardiac arrhythmias and heart blocks. Diagnosis of the disease must include a lab test to detect the parasite or its immune reactions and the usual techniques to evaluate cardiac function. Therapeutic management of Chagas heart failure does not differ significantly from the most common treatment for dilated cardiomyopathy, with special focus on arrhythmias and several degrees of heart block. Heart transplantation is reserved for end-stage cases. Major international scientific organisations are delivering recommendations for prevention and early diagnosis. This article provides an analysis of epidemiology, prevention, treatment and the relationship between Chagas disease and heart failure.