Unknown

Dataset Information

0

Impact of Nanoparticle Uptake on the Biophysical Properties of Cell for Biomedical Engineering Applications.


ABSTRACT: Nanomaterials are currently the state-of-the-art in the development of advanced biomedical devices and applications where classical approaches have failed. To date, majority of the literature on nanomaterial interaction with cells have largely focused on the biological responses of cells obtained via assays, with little interest on their biophysical responses. However, recent studies have shown that the biophysical responses of cells, such as stiffness and adhesive properties, play a significant role in their physiological function. In this paper, we investigate cell biophysical responses after uptake of nanoparticles. Atomic force microscopy was used to study changes in cell stiffness and adhesion upon boron nitride (BN) and hydroxyapatite (HAP) nanoparticle uptake. Results show increase in cell stiffness with varying nanoparticle (BN and HAP) concentration, while a decrease in cell adhesion trigger by uptake of HAP. In addition, changes in the biochemical response of the cell membrane were observed via Raman spectroscopy of nanoparticle treated cells. These findings have significant implications in biomedical applications of nanoparticles, e.g. in drug delivery, advanced prosthesis and surgical implants.

SUBMITTER: Rasel MAI 

PROVIDER: S-EPMC6458124 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Impact of Nanoparticle Uptake on the Biophysical Properties of Cell for Biomedical Engineering Applications.

Rasel Md Alim Iftekhar MAI   Singh Sanjleena S   Nguyen Trung Dung TD   Afara Isaac O IO   Gu Yuantong Y  

Scientific reports 20190410 1


Nanomaterials are currently the state-of-the-art in the development of advanced biomedical devices and applications where classical approaches have failed. To date, majority of the literature on nanomaterial interaction with cells have largely focused on the biological responses of cells obtained via assays, with little interest on their biophysical responses. However, recent studies have shown that the biophysical responses of cells, such as stiffness and adhesive properties, play a significant  ...[more]

Similar Datasets

| S-EPMC6961000 | biostudies-literature
| S-EPMC2853796 | biostudies-literature
| S-EPMC4477602 | biostudies-literature
| S-EPMC7091667 | biostudies-literature
| S-EPMC6386136 | biostudies-literature
| S-EPMC4166029 | biostudies-other
| S-EPMC6970918 | biostudies-literature
| S-EPMC2775423 | biostudies-literature
| S-EPMC4508017 | biostudies-literature
| S-EPMC6027497 | biostudies-literature