Project description:Purpose of reviewProne position has been widely used in the COVID-19 pandemic, with an extension of its use in patients with spontaneous breathing ('awake prone'). We herein propose a review of the current literature on prone position in mechanical ventilation and while spontaneous breathing in patients with COVID-19 pneumonia or COVID-19 ARDS.Recent findingsA literature search retrieved 70 studies separating whether patient was intubated (24 studies) or nonintubated (46 studies). The outcomes analyzed were intubation rate, mortality and respiratory response to prone. In nonintubated patient receiving prone position, the main finding was mortality reduction in ICU and outside ICU setting.SummaryThe final results of the several randomized control trials completed or ongoing are needed to confirm the trend of these results. In intubated patients, observational studies showed that responders to prone in terms of oxygenation had a better survival than nonresponders.
Project description:BackgroundThe effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure.MethodsFifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2 < 200 mmHg underwent high-flow nasal oxygen for 1 h in supine position and 2 h in prone position, followed by a final 1-h supine phase. At the end of each study phase, the following parameters were measured: arterial blood gases, inspiratory effort (ΔPES), transpulmonary driving pressure (ΔPL), respiratory rate and esophageal pressure simplified pressure-time product per minute (sPTPES) by esophageal manometry, tidal volume (VT), end-expiratory lung impedance (EELI), lung compliance, airway resistance, time constant, dynamic strain (VT/EELI) and pendelluft extent through electrical impedance tomography.ResultsCompared to supine position, prone position increased PaO2/FiO2 (median [Interquartile range] 104 mmHg [76-129] vs. 74 [69-93], p < 0.001), reduced respiratory rate (24 breaths/min [22-26] vs. 27 [26-30], p = 0.05) and increased ΔPES (12 cmH2O [11-13] vs. 9 [8-12], p = 0.04) with similar sPTPES (131 [75-154] cmH2O s min-1 vs. 105 [81-129], p > 0.99) and ΔPL (9 [7-11] cmH2O vs. 8 [5-9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units-3 [4-11] vs. 6 [4-9], p = 0.05; 0.53 s [0.32-61] vs. 0.40 [0.37-0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414-8547] vs. 1456 [959-2420], p = 0.002) and promoted VT distribution towards dorsal lung regions without affecting VT size and lung compliance: this generated lower dynamic strain (0.21 [0.16-0.24] vs. 0.38 [0.30-0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7-57] of VT in prone vs. 31% [14-55] in supine position, p > 0.99).ConclusionsProne position improves oxygenation, increases EELI and promotes VT distribution towards dependent lung regions without affecting VT size, ΔPL, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔPES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔPES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔPES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017.
Project description:Severe hypoxemic respiratory failure is frequently managed with invasive mechanical ventilation with or without prone position (PP). We describe 13 cases of nonhypercapnic acute hypoxemic respiratory failure (AHRF) of varied etiology, who were treated successfully in PP without the need for intubation. Noninvasive ventilation (NIV), high-flow oxygen via nasal cannula, supplementary oxygen with venturi face mask, or nasal cannula were used variedly in these patients. Mechanical ventilatory support is offered to patients with AHRF when other methods, such as NIV and oxygen via high-flow nasal cannula, fail. Invasive mechanical ventilation is fraught with complications which could be immediate, ranging from worsening of hypoxemia, worsening hemodynamics, loss of airway, and even death. Late complications could be ventilator-associated pneumonia, biotrauma, tracheal stenosis, etc. Prone position is known to improve oxygenation and outcome in adult respiratory distress syndrome. We postulated that positioning an unintubated patient with AHRF in PP will improve oxygenation and avoid the need for invasive mechanical ventilation and thereby its complications. Here, we describe a series of 13 patients with hypoxemic respiratory of varied etiology, who were successfully treated in the PP without endotracheal intubation. Two patients (15.4%) had mild, nine (69.2%) had moderate, and two (15.4%) had severe hypoxemia. Oxygenation as assessed by PaO2/FiO2 ratio in supine position was 154 ± 52, which improved to 328 ± 65 after PP. Alveolar to arterial (A-a) O2 gradient improved from a median of 170.5 mm Hg interquartile range (IQR) (127.8, 309.7) in supine position to 49.1 mm Hg IQR (45.0, 56.6) after PP. This improvement in oxygenation took a median of 46 hours, IQR (24, 109). Thus, voluntary PP maneuver improved oxygenation and avoided endotracheal intubation in a select group of patients with hypoxemic respiratory failure. This maneuver may be relevant in the ongoing novel coronavirus disease pandemic by potentially reducing endotracheal intubation and the need for ventilator and therefore better utilization of critical care services.How to cite this articleRao SV, Udhayachandar R, Rao VB, Raju NA, Nesaraj JJJ, Kandasamy S, et al. Voluntary Prone Position for Acute Hypoxemic Respiratory Failure in Unintubated Patients. Indian J Crit Care Med 2020;24(7):557-562.
Project description:BackgroundThe goal of this study was to determine whether an awake prone position (aPP) reduces the global inhomogeneity (GI) index of ventilation measured by electrical impedance tomography (EIT) in COVID-19 patients with acute respiratory failure (ARF).MethodsThis prospective crossover study included COVID-19 patients with COVID-19 and ARF defined by arterial oxygen tension:inspiratory oxygen fraction (P aO2 :F IO2 ) of 100-300 mmHg. After baseline evaluation and 30-min EIT recording in the supine position (SP), patients were randomised into one of two sequences: SP-aPP or aPP-SP. At the end of each 2-h step, oxygenation, respiratory rate, Borg scale and 30-min EIT were recorded.Results10 patients were randomised in each group. The GI index did not change in the SP-aPP group (baseline 74±20%, end of SP 78±23% and end of aPP 72±20%, p=0.85) or in the aPP-SP group (baseline 59±14%, end of aPP 59±15% and end of SP 54±13%, p=0.67). In the whole cohort, P aO2 :F IO2 increased from 133±44 mmHg at baseline to 183±66 mmHg in aPP (p=0.003) and decreased to 129±49 mmHg in SP (p=0.03).ConclusionIn spontaneously breathing nonintubated COVID-19 patients with ARF, aPP was not associated with a decrease of lung ventilation inhomogeneity assessed by EIT, despite an improvement in oxygenation.
Project description:Background We aimed to investigate the effects of awake prone positioning (APP) in nonintubated adult patients with acute hypoxemic respiratory failure due to COVID-19. Methods The PubMed, Embase, Web of Science and Cochrane Central Register databases were searched up to June 1, 2022. All randomized trials investigating the effects of APP were included in the present meta-analysis. The primary outcome was intubation rate, and the secondary outcomes included the length of intensive care unit (ICU) stay, hospital stay, and mortality. Prescribed subgroup analysis was also conducted. Results A total of 10 randomized trials enrolling 2324 patients were ultimately included in the present study. The results indicated that APP was associated with a significant reduction in the intubation rate (OR 0.77, 95% CI 0.63 to 0.93, P = 0.007). However, no differences could be observed in the length of ICU stay or hospitalization or mortality. Subgroup analysis suggested that patients in the ICU settings (OR 0.74, 95% CI 0.60 to 0.91, P = 0.004), patients whose median APP time was more than 4 h (OR 0.77, 95% CI 0.63 to 0.93, P = 0.008), and patients with an average baseline SpO2 to FiO2 ratio less than 200 (OR 0.75, 95% CI 0.61 to 0.92) were more likely to benefit from APP, indicated a significantly reduced intubation rate. Conclusion Based on the current evidence, nonintubated adult patients with hypoxemic respiratory failure due to COVID-19 infection who underwent APP were shown to have a significantly reduced intubation rate. However, no differences in ICU or hospital length of stay or mortality could be observed between APP and usual care. Registration number CRD42022337846 Supplementary Information The online version contains supplementary material available at 10.1186/s12890-023-02442-3.
Project description:BackgroundResearchers have tried unsuccessfully for many years using randomized controlled trials to show the efficacy of prone ventilation in treating ARDS. These failed attempts were of use in designing the successful PROSEVA trial, published in 2013. However, the evidence provided by meta-analyses in support of prone ventilation for ARDS was too low to be conclusive. The present study shows that meta-analysis is indeed not the best approach for the assessment of evidence as to the efficacy of prone ventilation.MethodsWe performed a cumulative meta-analysis to prove that only the PROSEVA trial, due to its strong protective effect, has substantially impacted on the outcome. We also replicated nine published meta-analyses including the PROSEVA trial. We performed leave-one-out analyses, removing one trial at a time from each meta-analysis, measuring p values for effect size, and also the Cochran's Q test for heterogeneity assessment. We represented these analyses in a scatter plot to identify outlier studies influencing heterogeneity or overall effect size. We used interaction tests to formally identify and evaluate differences with the PROSEVA trial.ResultsThe positive effect of the PROSEVA trial accounted for most of the heterogeneity and for the reduction of overall effect size in the meta-analyses. The interaction tests we conducted on the nine meta-analyses formally confirmed the difference in the effectiveness of prone ventilation between the PROSEVA trial the other studies.ConclusionsThe clinical lack of homogeneity between the PROSEVA trial design and the other studies should have discouraged the use of meta-analysis. Statistical considerations support this hypothesis, suggesting that the PROSEVA trial is an independent source of evidence.
Project description:BackgroundLimited data are available for the oxygenation changes following prone position in relation to hemodynamic and pulmonary vascular variations in acute respiratory distress syndrome (ARDS), using reliable invasive methods. We aimed to assess oxygenation and hemodynamic changes between the supine and prone posture in patients with ARDS and identify parameters associated with oxygenation improvement.MethodsEighteen patients with ARDS under protective ventilation were assessed using advanced pulmonary artery catheter monitoring. Physiologic parameters were recorded at baseline supine position, 1 h and 18 h following prone position.ResultsThe change in the Oxygenation Index (ΔOI) between supine and 18 h prone significantly correlated to the concurrent change in shunt fraction (r = 0.75, p = 0.0001), to the ΔOI between supine and 1 h prone (r = 0.73, p = 0.001), to the supine acute lung injury score and the OI (r = -0.73, p = 0.009 and r = 0.69, p = 0.002, respectively). Cardiac output did not change between supine and prone posture. Moreover, there was no change in pulmonary pressure, pulmonary vascular resistances, right ventricular (RV) volumes and the RV ejection fraction.ConclusionsThe present investigation provides physiologic clinical data supporting that oxygenation improvement following prone position in ARDS is driven by the shunt fraction reduction and not by changes in hemodynamics. Moreover, oxygenation improvement was not correlated with RV or pulmonary circulation changes.
Project description:Acute respiratory failure occurs in up to half of patients with haematological malignancies and 15% of those with solid tumours or solid organ transplantation. Mortality remains high. Factors associated with mortality include a need for invasive mechanical ventilation, organ dysfunction, older age, frailty or poor performance status, delayed intensive care unit admission, and acute respiratory failure due to an invasive fungal infection or unknown cause. In addition to appropriate antibacterial therapy, initial clinical management aims to restore oxygenation and predict the most probable cause based on variables related to the underlying disease, acute respiratory failure characteristics, and radiographic findings. The cause of acute respiratory failure must then be confirmed using the most efficient, least invasive, and safest diagnostic tests. In patients with acute respiratory failure of undetermined cause, a standardised diagnostic investigation should be done immediately at admission before deciding whether to perform more invasive diagnostic procedures or to start empirical treatments. Collaborative and multidisciplinary clinical and research networks are crucial to improve our understanding of disease pathogenesis and causation and to develop less invasive diagnostic strategies and more targeted treatment options.