Project description:ObjectivesProne positioning allows to improve oxygenation and decrease mortality rate in COVID-19-associated acute respiratory distress syndrome (C-ARDS). However, the mechanisms leading to these effects are not fully understood. The aim of this study is to assess the physiologic effects of pronation by the means of CT scan and electrical impedance tomography (EIT).DesignExperimental, physiologic study.SettingPatients were enrolled from October 2020 to March 2021 in an Italian dedicated COVID-19 ICU.PatientsTwenty-one intubated patients with moderate or severe C-ARDS.InterventionsFirst, patients were transported to the CT scan facility, and image acquisition was performed in prone, then supine position. Back to the ICU, gas exchange, respiratory mechanics, and ventilation and perfusion EIT-based analysis were provided toward the end of two 30 minutes steps (e.g., in supine, then prone position).Measurements and main resultsProne position induced recruitment in the dorsal part of the lungs (12.5% ± 8.0%; p < 0.001 from baseline) and derecruitment in the ventral regions (-6.9% ± 5.2%; p < 0.001). These changes led to a global increase in recruitment (6.0% ± 6.7%; p < 0.001). Respiratory system compliance did not change with prone position (45 ± 15 vs 45 ± 18 mL/cm H2O in supine and prone position, respectively; p = 0.957) suggesting a decrease in atelectrauma. This hypothesis was supported by the decrease of a time-impedance curve concavity index designed as a surrogate for atelectrauma (1.41 ± 0.16 vs 1.30 ± 0.16; p = 0.001). Dead space measured by EIT was reduced in the ventral regions of the lungs, and the dead-space/shunt ratio decreased significantly (5.1 [2.3-23.4] vs 4.3 [0.7-6.8]; p = 0.035), showing an improvement in ventilation-perfusion matching.ConclusionsSeveral changes are associated with prone position in C-ARDS: increased lung recruitment, decreased atelectrauma, and improved ventilation-perfusion matching. These physiologic effects may be associated with more protective ventilation.
Project description:Purpose of reviewProne position has been widely used in the COVID-19 pandemic, with an extension of its use in patients with spontaneous breathing ('awake prone'). We herein propose a review of the current literature on prone position in mechanical ventilation and while spontaneous breathing in patients with COVID-19 pneumonia or COVID-19 ARDS.Recent findingsA literature search retrieved 70 studies separating whether patient was intubated (24 studies) or nonintubated (46 studies). The outcomes analyzed were intubation rate, mortality and respiratory response to prone. In nonintubated patient receiving prone position, the main finding was mortality reduction in ICU and outside ICU setting.SummaryThe final results of the several randomized control trials completed or ongoing are needed to confirm the trend of these results. In intubated patients, observational studies showed that responders to prone in terms of oxygenation had a better survival than nonresponders.
Project description:Severe hypoxemic respiratory failure is frequently managed with invasive mechanical ventilation with or without prone position (PP). We describe 13 cases of nonhypercapnic acute hypoxemic respiratory failure (AHRF) of varied etiology, who were treated successfully in PP without the need for intubation. Noninvasive ventilation (NIV), high-flow oxygen via nasal cannula, supplementary oxygen with venturi face mask, or nasal cannula were used variedly in these patients. Mechanical ventilatory support is offered to patients with AHRF when other methods, such as NIV and oxygen via high-flow nasal cannula, fail. Invasive mechanical ventilation is fraught with complications which could be immediate, ranging from worsening of hypoxemia, worsening hemodynamics, loss of airway, and even death. Late complications could be ventilator-associated pneumonia, biotrauma, tracheal stenosis, etc. Prone position is known to improve oxygenation and outcome in adult respiratory distress syndrome. We postulated that positioning an unintubated patient with AHRF in PP will improve oxygenation and avoid the need for invasive mechanical ventilation and thereby its complications. Here, we describe a series of 13 patients with hypoxemic respiratory of varied etiology, who were successfully treated in the PP without endotracheal intubation. Two patients (15.4%) had mild, nine (69.2%) had moderate, and two (15.4%) had severe hypoxemia. Oxygenation as assessed by PaO2/FiO2 ratio in supine position was 154 ± 52, which improved to 328 ± 65 after PP. Alveolar to arterial (A-a) O2 gradient improved from a median of 170.5 mm Hg interquartile range (IQR) (127.8, 309.7) in supine position to 49.1 mm Hg IQR (45.0, 56.6) after PP. This improvement in oxygenation took a median of 46 hours, IQR (24, 109). Thus, voluntary PP maneuver improved oxygenation and avoided endotracheal intubation in a select group of patients with hypoxemic respiratory failure. This maneuver may be relevant in the ongoing novel coronavirus disease pandemic by potentially reducing endotracheal intubation and the need for ventilator and therefore better utilization of critical care services. How to cite this article:Rao SV, Udhayachandar R, Rao VB, Raju NA, Nesaraj JJJ, Kandasamy S, et al. Voluntary Prone Position for Acute Hypoxemic Respiratory Failure in Unintubated Patients. Indian J Crit Care Med 2020;24(7):557-562.
Project description:BackgroundProne position has been shown to improve oxygenation and survival in patients with early acute respiratory distress syndrome (ARDS). These beneficial effects are partly mediated by improved ventilation/perfusion (V/Q) distribution. Few studies have investigated the impact of early versus delayed proning on V/Q distribution in patients with ARDS. The aim of this study was to assess the regional ventilation and perfusion distribution in early versus persistent ARDS after prone position.MethodsThis is a prospective, observational study from June 30, 2021, to October 1, 2022 at the medical ICU in Zhongda Hospital, Southeast University. Fifty-seven consecutive adult patients with moderate-to-severe ARDS ventilated in supine and prone position. Electrical impedance tomography was used to study V/Q distribution in the supine position and 12 h after a prone session.ResultsOf the 57 patients, 33 were early ARDS (≤ 7 days) and 24 were persistent ARDS (> 7 days). Oxygenation significantly improved after proning in early ARDS (157 [121, 191] vs. 190 [164, 245] mm Hg, p < 0.001), whereas no significant change was found in persistent ARDS patients (168 [136, 232] vs.177 [155, 232] mm Hg, p = 0.10). Compared to supine position, prone reduced V/Q mismatch in early ARDS (28.7 [24.6, 35.4] vs. 22.8 [20.0, 26.8] %, p < 0.001), but increased V/Q mismatch in persistent ARDS (23.8 [19.8, 28.6] vs. 30.3 [24.5, 33.3] %, p = 0.006). In early ARDS, proning significantly reduced shunt in the dorsal region and dead space in the ventral region. In persistent ARDS, proning increased global shunt. A significant correlation was found between duration of ARDS onset to proning and the change in V/Q distribution (r = 0.54, p < 0.001).ConclusionsProne position significantly reduced V/Q mismatch in patients with early ARDS, while it increased V/Q mismatch in persistent ARDS patients. Trial registration ClinicalTrials.gov (NCT05207267, principal investigator Ling Liu, date of registration 2021.08.20).
Project description:RationaleThe prone position is used to improve gas exchange in patients with acute respiratory distress syndrome. However, the regional mechanism by which the prone position improves gas exchange in acutely injured lungs is still incompletely defined.MethodsWe used positron emission tomography imaging of [(13)N]nitrogen to assess the regional distribution of pulmonary shunt, aeration, perfusion, and ventilation in seven surfactant-depleted sheep in supine and prone positions.ResultsIn the supine position, the dorsal lung regions had a high shunt fraction, high perfusion, and poor aeration. The prone position was associated with an increase in lung gas content and with a more uniform distribution of aeration, as the increase in aeration in dorsal lung regions was not offset by loss of aeration in ventral regions. Consequently, the shunt fraction decreased in dorsal regions in the prone position without a concomitant impairment of gas exchange in ventral regions, thus leading to a significant increase in the fraction of pulmonary perfusion participating in gas exchange. In addition, the vertical distribution of specific alveolar ventilation became more uniform in the prone position. A biphasic relation between regional shunt fraction and gas fraction showed low shunt for values of gas fraction higher than a threshold, and a steep linear increase in shunt for lower values of gas fraction.ConclusionIn a surfactant-deficient model of lung injury, the prone position improved gas exchange by restoring aeration and decreasing shunt while preserving perfusion in dorsal lung regions, and by making the distribution of ventilation more uniform.
Project description:ObjectivesTo assess the safety and feasibility of a new protocol for interhospital critical care transport of mechanically ventilated patients in the prone position during the coronavirus disease 2019 pandemic by nurse and paramedic critical care transport teams.DesignRetrospective observational study.SettingSingle critical care transport agency serving multiple centers in the greater Boston area.PatientsAll transports of intubated patients in the prone position with severe hypoxemic respiratory failure secondary to coronavirus disease 2019.InterventionsRecords were reviewed for patients transported in the prone position. Major adverse events in transport, defined as severe hypoxemia (oxygen saturation < 80% or an absolute decrease in oxygen saturation > 10%), hypotension (mean arterial pressure < 65 mm Hg) not responsive to vasopressors or inotropes, endotracheal tube or vascular catheter dislodgement, and cardiac arrest, were recorded.Measurements and main resultsA total of 25 patients were transported in prone position. The mean Pao2:Fio2 ratio in the group was 101.3 mm Hg, and 76% (n = 19) were on vasopressors. Fourteen patients (56%) had hypotension with at least one episode of mean arterial pressure less than 65 mm Hg en route, and seven (28%) had an episode of oxygen desaturation less than 88%. Only one major adverse event of severe hypoxemia (oxygen saturation < 80%) was noted.ConclusionsCritical care transport of severe hypoxemic respiratory failure patients with coronavirus disease 2019 in the prone position is safe when performed by a dedicated team of critical care nurse and paramedics with an established protocol.
Project description:The use of non-invasive ventilation in patients with community-acquired pneumonia is controversial since this is associated with high rates of treatment failure, compared with other causes of severe acute respiratory failure. The populations of patients with community-acquired pneumonia who have demonstrated better response to non-invasive ventilation are those with previous cardiac or respiratory disease, particularly chronic obstructive pulmonary disease. By contrast, the use of non-invasive ventilation in patients with community-acquired pneumonia without these pre-existing diseases should be very cautious and under strict monitoring conditions, since there are increasing evidences that the unnecessary delay in intubation of those patients who fail treatment with non-invasive ventilation is associated with lower survival. Pulmonary complications of immunosuppressed patients are associated with high rates of intubation and mortality. The use of non-invasive ventilation in these patients may decrease the need for intubation and improve the poor outcome associated with these complications. Continuous positive airway pressure has been used to treat acute respiratory failure in several conditions characterised by alveolar collapse. While this is extremely useful in patients with acute cardiogenic pulmonary oedema, the efficacy in pneumonia seems limited to immunosuppressed patients with pulmonary complications. Conversely, there are no sufficient evidences on the efficacy of continuous positive airway pressure in immunocompetent patients with pneumonia and severe acute respiratory failure.