Project description:The Human Cytochrome P450 (CYP) Allele Nomenclature Database, a critical resource for the pharmacogenetics and genomics communities, has transitioned to the Pharmacogene Variation (PharmVar) Consortium. In this report we provide a summary of the current database, provide an overview of the PharmVar consortium, and highlight the PharmVar database which will serve as the new home for pharmacogene nomenclature.
Project description:Genetic variations in drug metabolising enzymes play a role in how individuals respond to drugs. Pharmacogene variation data in the Ghanaian population is limited and this study looks at exploring common variations that exist in our population for commonly used drugs. Samples were validated with PCR-RFLP for accuracy
Project description:Thiopurine methyltransferase (TPMT) activity exhibits a monogenic codominant inheritance and catabolizes thiopurines. TPMT variant alleles are associated with low enzyme activity and pronounced pharmacologic effects of thiopurines. Loss-of-function alleles in the NUDT15 gene are common in Asians and Hispanics and reduce the degradation of active thiopurine nucleotide metabolites, also predisposing to myelosuppression. We provide recommendations for adjusting starting doses of azathioprine, mercaptopurine, and thioguanine based on TPMT and NUDT15 genotypes (updates on www.cpicpgx.org).
Project description:PurposePharmacogenes have an influence on biotransformation pathway and clinical outcome of primaquine and chloroquine which are often prescribed to treat Plasmodium vivax infection. Genetic variation may impact enzyme activity and/or transporter function and thereby contribute to relapse. The aim of the study was to assess allele, genotype frequencies and the association between pharmacogenes variation and primaquine response in Thai patients infected with Plasmodium vivax.Patients and methodsFifty-one patients were genotyped for 74 variants in 18 genes by Sequenom MassARRAY® and Taqman® SNP Real-Time PCR.ResultsSNP frequencies were not significantly different between relapse (n=4) and non-relapse (n=47) patients. However, the CYP2C19 c.681G>A, the frequency of the A-allele that defines the non-functional CYP2C19*2 haplotype was significantly higher compared to the G-allele (OR=5.14, p=0.021). Patients heterozygous for ABCG2 c.421C>A had a higher odds ratio (OR=8.75, p=0.071) and the frequency of the G-allele of UGT2B7 c.372G>A was higher compared to the A-allele (OR=3.75, p=0.081). CYP2C19, ABCG2 and UGT2B7 emerged as potential high priority genes.ConclusionDecreased activity of CYP2C19, ABCG2 and UGT2B7 in combination with CYP2D6 intermediate or poor metabolizer status may expose patients to a higher risk of Plasmodium vivax relapse. Further investigations are warranted to substantiate these findings.
Project description:IntroductionAzathioprine (AZA) has been widely used for the treatment of various immune-related diseases and has become a mainstay in the treatment of inflammatory bowel disease. However, patients with genetic mutations may experience severe adverse events when treated with azathioprine. Most of the previous literature focused on the TPMP gene-related adverse reactions, herein, we report a case of Crohn's disease patient with nucleoside diphosphate-linked moiety X motif 15 gene (NUDT15) variation and wild-type TPMP gene who developed toxoplasma gondii infection after azathioprine treatment.Patient concernsA 56-year-old Crohn's disease patient developed toxoplasma gondii infection within 2 months after the administration of azathioprine; however, he had no relevant high-risk factors.DiagnosisSubsequent genetic testing revealed that the patient was heterozygous for NUDT15. Therefore, it was reasonable to consider that the patient's genetic mutation resulted in reduced tolerance to azathioprine, leading to low immunity and eventually toxoplasma infection.InterventionsAZA was then discontinued; after anti-infection, antipyretic and other supportive treatments were administered, the patient's condition gradually improved.OutcomesThe patient was followed up at 1, 3, and 6 months after discharge; fortunately, he was in good health.ConclusionWe report a case of Crohn's disease in a patient who developed severe pneumonia caused by toxoplasma gondii infection due to the administration of AZA, with normal TPMP gene but NUDT15 gene mutation. This indicates that NUDT15 variation may contribute to severe adverse events in patients treated with azathioprine, and we suggest that NUDT15 genotype be detected before the use of azathioprine in order to provide personalized therapy and reduce side effects.
Project description:Regulatory elements play an important role in the variability of individual responses to drug treatment. This has been established through studies on three classes of elements that regulate RNA and protein abundance: promoters, enhancers and microRNAs. Each of these elements, and genetic variants within them, are being characterized at an exponential pace by next-generation sequencing (NGS) technologies. In this review, we outline examples of how each class of element affects drug response via regulation of drug targets, transporters and enzymes. We also discuss the impact of NGS technologies such as chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq), and the ramifications of new techniques such as high-throughput chromosome capture (Hi-C), chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) and massively parallel reporter assays (MPRA). NGS approaches are generating data faster than they can be analyzed, and new methods will be required to prioritize laboratory results before they are ready for the clinic. However, there is no doubt that these approaches will bring about a systems-level understanding of the interplay between genetic variants and drug response. An understanding of the importance of regulatory variants in pharmacogenomics will facilitate the identification of responders versus non-responders, the prevention of adverse effects and the optimization of therapies for individual patients.
Project description:Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hematologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.