Unknown

Dataset Information

0

WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.


ABSTRACT: N 6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotes, and plays a pivotal role in various biological processes, such as splicing, RNA degradation and RNA-protein interaction. We report here a prediction framework WHISTLE for transcriptome-wide m6A RNA-methylation site prediction. When tested on six independent datasets, our approach, which integrated 35 additional genomic features besides the conventional sequence features, achieved a major improvement in the accuracy of m6A site prediction (average AUC: 0.948 and 0.880 under the full transcript or mature messenger RNA models, respectively) compared to the state-of-the-art computational approaches MethyRNA (AUC: 0.790 and 0.732) and SRAMP (AUC: 0.761 and 0.706). It also out-performed the existing epitranscriptome databases MeT-DB (AUC: 0.798 and 0.744) and RMBase (AUC: 0.786 and 0.736), which were built upon hundreds of epitranscriptome high-throughput sequencing samples. To probe the putative biological processes impacted by changes in an individual m6A site, a network-based approach was implemented according to the 'guilt-by-association' principle by integrating RNA methylation profiles, gene expression profiles and protein-protein interaction data. Finally, the WHISTLE web server was built to facilitate the query of our high-accuracy map of the human m6A epitranscriptome, and the server is freely available at: www.xjtlu.edu.cn/biologicalsciences/whistle and http://whistle-epitranscriptome.com.

SUBMITTER: Chen K 

PROVIDER: S-EPMC6468314 | biostudies-literature | 2019 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.

Chen Kunqi K   Wei Zhen Z   Zhang Qing Q   Wu Xiangyu X   Rong Rong R   Lu Zhiliang Z   Su Jionglong J   de Magalhães João Pedro JP   Rigden Daniel J DJ   Meng Jia J  

Nucleic acids research 20190401 7


N 6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotes, and plays a pivotal role in various biological processes, such as splicing, RNA degradation and RNA-protein interaction. We report here a prediction framework WHISTLE for transcriptome-wide m6A RNA-methylation site prediction. When tested on six independent datasets, our approach, which integrated 35 additional genomic features besides the conventional sequence features, achieved a major improvement  ...[more]

Similar Datasets

| S-EPMC7779050 | biostudies-literature
| S-EPMC4393108 | biostudies-literature
| S-EPMC7431669 | biostudies-literature
| S-EPMC6112328 | biostudies-literature
| S-EPMC8383060 | biostudies-literature
| S-EPMC6112310 | biostudies-literature
| S-EPMC7408378 | biostudies-literature
| S-EPMC5725193 | biostudies-literature
| S-EPMC7373739 | biostudies-literature
| S-EPMC8436914 | biostudies-literature