Unknown

Dataset Information

0

Role of Ligand Conformation on Nanoparticle-Protein Interactions.


ABSTRACT: Engineered biomedical nanoparticles (NPs) administered via intravenous routes are prone to associate to serum proteins. The protein corona can mask the NP surface functionalization and hamper the delivery of the NP to its biological target. The design of corona-free NPs relies on our understanding of the chemical-physical features of the NP surface driving the interaction with serum proteins. Here, we address, by computational means, the interaction between human serum albumin (HSA) and a prototypical monolayer-protected Au nanoparticle. We show that both the chemical composition (charge, hydrophobicity) and the conformational preferences of the ligands decorating the NP surface affect the NP propensity to bind HSA.

SUBMITTER: Simonelli F 

PROVIDER: S-EPMC6469838 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Role of Ligand Conformation on Nanoparticle-Protein Interactions.

Simonelli Federica F   Rossi Giulia G   Monticelli Luca L  

The journal of physical chemistry. B 20190214 8


Engineered biomedical nanoparticles (NPs) administered via intravenous routes are prone to associate to serum proteins. The protein corona can mask the NP surface functionalization and hamper the delivery of the NP to its biological target. The design of corona-free NPs relies on our understanding of the chemical-physical features of the NP surface driving the interaction with serum proteins. Here, we address, by computational means, the interaction between human serum albumin (HSA) and a protot  ...[more]

Similar Datasets

| S-EPMC5883865 | biostudies-literature
| S-EPMC4736050 | biostudies-literature
| S-EPMC2690647 | biostudies-literature
| S-EPMC6746847 | biostudies-literature
| S-EPMC5521955 | biostudies-literature
| S-EPMC3134168 | biostudies-literature
| S-EPMC1134202 | biostudies-other
| S-EPMC3354956 | biostudies-literature
| S-EPMC4810802 | biostudies-literature
| S-EPMC4434174 | biostudies-literature