Unknown

Dataset Information

0

Alone at last! - Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum.


ABSTRACT: Corynebacterium glutamicum can grow on d-xylose as sole carbon and energy source via the five-step Weimberg pathway when the pentacistronic xylXABCD operon from Caulobacter crescentus is heterologously expressed. More recently, it could be demonstrated that the C. glutamicum wild type accumulates the Weimberg pathway intermediate d-xylonate when cultivated in the presence of d-xylose. Reason for this is the activity of the endogenous dehydrogenase IolG, which can also oxidize d-xylose. This raised the question whether additional endogenous enzymes in C. glutamicum contribute to the catabolization of d-xylose via the Weimberg pathway. In this study, analysis of the C. glutamicum genome in combination with systematic reduction of the heterologous xylXABCD operon revealed that the hitherto unknown and endogenous dehydrogenase KsaD (Cg0535) can also oxidize ?-ketoglutarate semialdehyde to the tricarboxylic acid cycle intermediate ?-ketoglutarate, the final enzymatic step of the Weimberg pathway. Furthermore, heterologous expression of either xylX or xylD, encoding for the two dehydratases of the Weimberg pathway in C. crescentus, is sufficient for enabling C. glutamicum to grow on d-xylose as sole carbon and energy source. Finally, several variants for the carbon-efficient microbial production of ?-ketoglutarate from d-xylose were constructed. In comparison to cultivation solely on d-glucose, the best strain accumulated up to 1.5-fold more ?-ketoglutarate in d-xylose/d-glucose mixtures.

SUBMITTER: Brusseler C 

PROVIDER: S-EPMC6475665 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Alone at last! - Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in <i>Corynebacterium glutamicum</i>.

Brüsseler Christian C   Späth Anja A   Sokolowsky Sascha S   Marienhagen Jan J  

Metabolic engineering communications 20190410


<i>Corynebacterium glutamicum</i> can grow on d-xylose as sole carbon and energy source via the five-step Weimberg pathway when the pentacistronic <i>xylXABCD</i> operon from <i>Caulobacter crescentus</i> is heterologously expressed. More recently, it could be demonstrated that the <i>C. glutamicum</i> wild type accumulates the Weimberg pathway intermediate d-xylonate when cultivated in the presence of d-xylose. Reason for this is the activity of the endogenous dehydrogenase IolG, which can also  ...[more]

Similar Datasets

| S-EPMC8593837 | biostudies-literature
| S-EPMC4353348 | biostudies-literature
| S-EPMC7533341 | biostudies-literature
| S-EPMC178988 | biostudies-other
| S-EPMC8760817 | biostudies-literature
2020-03-24 | GSE138829 | GEO
| S-EPMC444832 | biostudies-literature
| S-EPMC8137953 | biostudies-literature
| S-EPMC178206 | biostudies-other
2007-11-09 | PRD000026 | Pride