Ontology highlight
ABSTRACT: Background
Prostate cancer (PCa), a major cause of cancer-related morbidity and mortality worldwide and mostly asymptomatic at earliest stages, is characterized by disruption of genetic and epigenetic balance. A better understanding of how those mechanisms orchestrate disease might improve diagnostic and prognostic tools, allowing for improvements in treatment efficacy. Replacement of canonical histones, an epigenetic mechanism, is highly conserved among species and altered expression of histones variants (e.g., MacroH2A1) has been associated with tumorigenesis. H2AFY gene encodes two isoforms of H2A histone variant MacroH2A1: MacroH2A1.1 and MacroH2A1.2. Specifically, MacroH2A1.1 isoform inhibits cell proliferation and promotes cellular differentiation. Because the contribution of this histone variant to carcinogenesis has been reported in several cancer types, but not for PCa, we aimed to investigate the contribution of MacroH2A1 for prostate carcinogenesis.Methods
MacroH2A1, MacroH2A1.1 and MacroH2A1.2 isoforms and the corresponding splicing regulators transcript levels were evaluated by RT-qPCR, in a tissue cohort composed by PCa, prostatic intraepithelial neoplasia (PIN) and normal prostate cases. Knockdown for MacroH2A1 and MacroH2A1.1 was performed through lentiviral transduction in DU145 cells, and MacroH2A1.1 overexpression was achieved in LNCaP cells by plasmid transfection, followed by functional assays. Biological and/or experimental replicates were performed when necessary, and specific statistical tests were applied to perform data analysis.Results
MacroH2A1.1 transcript levels were downregulated in PIN and primary PCa compared to normal prostate tissues. The same was found for QKI, a MacroH2A1.1's splicing regulator. Moreover, lower MacroH2A1.1 and QKI expression levels associated with less differentiated tumors (Gleason score???7). Interestingly, MacroH2A1.1, but more impressively DDX17 (AUC?=?0.93; p?ConclusionsOverall, our data, derived from primary PCa tissues and cell lines, anticipate a tumor suppressive role for MacroH2A1, particularly for the MacroH2A1.1 isoform, in prostate carcinogenesis.
SUBMITTER: Vieira-Silva TS
PROVIDER: S-EPMC6489299 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
Cancer cell international 20190429
<h4>Background</h4>Prostate cancer (PCa), a major cause of cancer-related morbidity and mortality worldwide and mostly asymptomatic at earliest stages, is characterized by disruption of genetic and epigenetic balance. A better understanding of how those mechanisms orchestrate disease might improve diagnostic and prognostic tools, allowing for improvements in treatment efficacy. Replacement of canonical histones, an epigenetic mechanism, is highly conserved among species and altered expression of ...[more]