Project description:BackgroundSmallpox was eradicated by 1980, but its possible use as a bioweapon has rekindled interest in the development of protective vaccines. Therefore, stockpiled calf lymph-derived vaccines and recently developed cell-cultured vaccines have been investigated to contribute information to smallpox emergency response plans, while newer (non-replication competent) vaccines are developed.ObjectivesTo assess the effects of smallpox vaccines in preventing the disease, in inducing immunity, and in regard to adverse events.Search strategyIn December 2006, we searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library 2006, Issue 4), MEDLINE, EMBASE, LILACS, and Current Controlled Trials, and handsearched Index Medicus. We also searched three databases of vaccine safety in December 2005.Selection criteriaRandomized controlled trials of smallpox vaccines versus placebo, other smallpox or non-smallpox vaccine, no intervention, or different dose of the same vaccine in people receiving smallpox vaccination irrespective of age.Data collection and analysisBoth authors independently assessed trial quality and extracted data. We combined dichotomous data using relative risk with a random-effects model.Main resultsTen trials involving 2412 participants were included. The vaccines investigated were calf-lymph derived first-generation vaccines (Dryvax, APVS, Lancy-vaxina, Lister), and cell-cultured second-generation vaccines (ACAM, CCSV). Vaccines were investigated in different dilutions. All undiluted vaccines induced a reaction in 95% of people vaccinated in terms of pustule and immunogenicity. Also 1:10 dilutions were fully efficient when the starting concentration was defined. Serious adverse events were reported in 1% to 2% of the volunteers. Fever was observed in 11% to 22% of participants, and headache in roughly half of the participants. Fever was less frequent when new vaccines were administered, but rates of headache were similar in new and old vaccines.Authors' conclusionsThe evidence shows that stockpiled vaccines have maintained their immunogenicity and new cell-cultured vaccines are similar to stockpiled vaccines in terms of vaccination success rate and immunogenicity. First- and second-generation vaccines diluted to at least 1:10 are as effective as undiluted vaccine in terms of clinical success rate and immunogenicity. Dilution did not reduce the frequency of adverse events. Success rate and immunogenicity were similar in naive and previously vaccinated persons, but there were fewer adverse events in previously vaccinated persons. The rate of adverse events found in this review reveals the need for further development and improvement of smallpox vaccines.
Project description:BackgroundAnthrax is a bacterial zoonosis that occasionally causes human disease and is potentially fatal. Anthrax vaccines include a live-attenuated vaccine, an alum-precipitated cell-free filtrate vaccine, and a recombinant protein vaccine.ObjectivesTo evaluate the effectiveness, immunogenicity, and safety of vaccines for preventing anthrax.Search strategyWe searched the following databases (November 2008): Cochrane Infectious Diseases Group Specialized Register; CENTRAL (The Cochrane Library 2008, Issue 4); MEDLINE; EMBASE; LILACS; and mRCT. We also searched reference lists.Selection criteriaWe included randomized controlled trials (RCTs) of individuals and cluster-RCTs comparing anthrax vaccine with placebo, other (non-anthrax) vaccines, or no intervention; or comparing administration routes or treatment regimens of anthrax vaccine.Data collection and analysisTwo authors independently considered trial eligibility, assessed risk of bias, and extracted data. We presented cases of anthrax and seroconversion rates using risk ratios (RR) and 95% confidence intervals (CI). We summarized immunoglobulin G (IgG) concentrations using geometric means. We carried out a sensitivity analysis to investigate the effect of clustering on the results from one cluster-RCT. No meta-analysis was undertaken.Main resultsOne cluster-RCT (with 157,259 participants) and four RCTs of individuals (1917 participants) met the inclusion criteria. The cluster-RCT from the former USSR showed that, compared with no vaccine, a live-attenuated vaccine (called STI) protected against clinical anthrax whether given by a needleless device (RR 0.16; 102,737 participants, 154 clusters) or the scarification method (RR 0.25; 104,496 participants, 151 clusters). Confidence intervals were statistically significant in unadjusted calculations, but when a small amount of association within clusters was assumed, the differences were not statistically significant. The four RCTs (of individuals) of inactivated vaccines (anthrax vaccine absorbed and recombinant protective antigen) showed a dose response relationship for the anti-protective antigen IgG antibody titre. Intramuscular administration was associated with fewer injection site reactions than subcutaneous injection, and injection site reaction rates were lower when the dosage interval was longer.Authors' conclusionsOne cluster-RCT provides limited evidence that a live-attenuated vaccine is effective in preventing cutaneous anthrax. Vaccines based on anthrax antigens are immunogenic in most vaccinees with few adverse events or reactions. Ongoing randomized controlled trials are investigating the immunogenicity and safety of anthrax vaccines.
Project description:Influenza is a contagious respiratory disease that causes severe illness and death, particularly in elderly populations. Two enhanced formulations of quadrivalent influenza vaccine (QIV) are available in Spain. Adjuvanted QIV (aQIV) is available for those aged 65+ and high-dose QIV (HD-QIV) for those aged 60+. In this study, we used a health economic model to assess the costs and outcomes associated with using aQIV or HD-QIV in subjects aged 65+. Using aQIV instead of HD-QIV to vaccinate an estimated 5,126,343 elderly people results in reductions of 5405 symptomatic cases, 760 primary care visits, 171 emergency room visits, 442 hospitalizations, and 26 deaths in Spain each year. Life-years (LYs) and quality-adjusted LYs (QALYs) increases by 260 and 206, respectively, each year. Savings from a direct medical payer perspective are EUR 63.6 million, driven by the lower aQIV vaccine price and a minor advantage in effectiveness. From a societal perspective, savings increase to EUR 64.2 million. Results are supported by scenario and sensitivity analyses. When vaccine prices are assumed equal, aQIV remains dominant compared to HD-QIV. Potential savings are estimated at over EUR 61 million in vaccine costs alone. Therefore, aQIV provides a highly cost-effective alternative to HD-QIV for people aged 65+ in Spain.
Project description:Egg-based seasonal influenza vaccines are the major preventive countermeasure against influenza virus. However, their effectiveness can be compromised when antigenic changes arise from egg-adaptive mutations on influenza hemagglutinin (HA). The L194P mutation is commonly observed in egg-based H3N2 vaccine seed strains and significantly alters HA antigenicity. An approach to prevent L194P would therefore be beneficial. We show that emergence of L194P during egg passaging can be impeded by preexistence of a G186V mutation, revealing strong incompatibility between these mutations. X-ray structures illustrate that individual G186V and L194P mutations have opposing effects on the HA receptor-binding site (RBS), and when both G186V and L194P are present, the RBS is severely disrupted. Importantly, wild-type HA antigenicity is maintained with G186V, but not L194P. Our results demonstrate that these epistatic interactions can be used to prevent the emergence of mutations that adversely alter antigenicity during egg adaptation.