Project description:UnlabelledBackgroundInfluenza is an acute respiratory illness caused by influenza viruses, which occurs in epidemics worldwide every year. Children are an important target for prevention methods, including vaccination. While evidence about the decision on whether to vaccinate healthy children is robust, evidence supporting the decision of which of available vaccines to use remains unclear.This review will summarize the evidence about the efficacy and safety of the available vaccines for seasonal influenza licensed in the United States for use in healthy children.Methods/designAn umbrella systematic review (SR) and network meta-analysis will be conducted of randomized controlled trials (RCTs). We will search for SRs to identify parallel RCTs evaluating inactive and/or live attenuated influenza vaccines licensed in the United States for use in healthy children to prevent influenza. Subsequently, we will update the literature search of the selected SRs to the present time to capture recent controlled studies. To complement the work focused on harms, we will also select observational studies focusing on post marketing retrospective studies. Inclusion will not be limited by language, publication date or publication status. To identify additional candidate studies, we will review the reference lists of the eligible primary studies and narrative reviews; we will query the expert members of the Advisory Committee on Immunization Practices and review references from their previous statement. Additionally, we will review the reports from the Institute of Medicine on the adverse effects of vaccines. Two reviewers will independently determine study eligibility and will extract descriptive, methodological (using the Cochrane risk of bias tool for RCTs and the Newcastle-Ottawa scale for observational studies) and efficacy data. When possible, we will conduct meta-analyses and network meta-analyses by combining indirect and direct comparisons.We will evaluate heterogeneity using the I2 statistic and the agreement of indirect comparisons and direct evidence. We will report the Cochrane Q test to determine the statistical significance of heterogeneity.The overall quality of evidence will be assessed following the GRADE (Grading of Recommendation, Assessment, Development and Evaluation) approach.DiscussionOur systematic review will allow patients, clinicians, guideline developers and policy makers to make evidence-based choices between the two available vaccine options, by providing information regarding benefits and harms of these types of vaccines.
Project description:Influenza is a major cause of respiratory disease leading to hospitalization in young children. However, seasonal trivalent influenza vaccines (TIVs) have been shown to be ineffective and poorly immunogenic in this population. The development of live-attenuated influenza vaccines and adjuvanted vaccines are important advances in the prevention of influenza in young children. The oil-in-water emulsions MF59 and adjuvant systems 03 (AS03) have been used as adjuvants in both seasonal adjuvanted trivalent influenza vaccines (ATIVs) and pandemic monovalent influenza vaccines. Compared with non-adjuvanted vaccine responses, these vaccines induce a more robust and persistent antibody response for both homologous and heterologous influenza strains in infants and young children. Evidence of a significant improvement in vaccine efficacy with these adjuvanted vaccines resulted in the use of the monovalent (A/H1N1) AS03-adjuvanted vaccine in children in the 2009 influenza pandemic and the licensure of the seasonal MF59 ATIV for children aged 6?months to 2 years in Canada. The mechanism of action of MF59 and AS03 remains unclear. Adjuvants such as MF59 induce proinflammatory cytokines and chemokines, including CXCL10, but independently of type-1 interferon. This proinflammatory response is associated with improved recruitment, activation and maturation of antigen presenting cells at the injection site. In young children MF59 ATIV produced more homogenous and robust transcriptional responses, more similar to adult-like patterns, than did TIV. Early gene signatures characteristic of the innate immune response, which correlated with antibody titers were also identified. Differences were detected when comparing child and adult responses including opposite trends in gene set enrichment at day 3 postvaccination and, unlike adult data, a lack of correlation between magnitude of plasmablast response at day 7 and antibody titers at day 28 in children. These insights show the utility of novel approaches in understanding new adjuvants and their importance for developing improved influenza vaccines for children.
Project description:BackgroundLive attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) are available for children. Local and systemic immunity induced by LAIV followed a month later by LAIV and IIV followed by LAIV were investigated with virus recovery after LAIV doses as surrogates for protection against influenza on natural exposure.MethodsFifteen children received IIV followed by LAIV, 13 an initial dose of LAIV, and 11 a second dose of LAIV. The studies were done during autumn 2009 and autumn 2010 with the same seasonal vaccine (A/California/07/09 [H1N1], A/Perth/16/09 [H3N2], B/Brisbane/60/08).ResultsTwenty-eight of 39 possible influenza viral strains were recovered after the initial dose of LAIV. When LAIV followed IIV, 21 of 45 viral strains were identified. When compared to primary LAIV infection, the decreased frequency of shedding with the IIV-LAIV schedule was significant (P = .023). With LAIV-LAIV, the fewest viral strains were recovered (3/33)--numbers significantly lower (P < .001) than shedding after initial LAIV and after IIV-LAIV (P < .001). Serum hemagglutination inhibition antibody responses were more frequent after IIV than LAIV (P = .02). In contrast, more mucosal immunoglobulin A responses were seen with LAIV.ConclusionsLAIV priming induces greater inhibition of virus recovery on LAIV challenge than IIV priming. The correlate(s) of protection are the subject of ongoing analysis.Clinical trials registrationNCT01246999.
Project description:BACKGROUND: Estimates of the effectiveness of influenza vaccines in older adults may be biased because of difficulties identifying and adjusting for confounders of the vaccine-outcome association. We estimated vaccine effectiveness for prevention of serious influenza complications among older persons by using methods to account for underlying differences in risk for these complications. METHODS: We conducted a retrospective cohort study among Ontario residents aged ? 65 years from September 1993 through September 2008. We linked weekly vaccination, hospitalization, and death records for 1.4 million community-dwelling persons aged ? 65 years. Vaccine effectiveness was estimated by comparing ratios of outcome rates during weeks of high versus low influenza activity (defined by viral surveillance data) among vaccinated and unvaccinated subjects by using log-linear regression models that accounted for temperature and time trends with natural spline functions. Effectiveness was estimated for three influenza-associated outcomes: all-cause deaths, deaths occurring within 30 days of pneumonia/influenza hospitalizations, and pneumonia/influenza hospitalizations. RESULTS: During weeks when 5% of respiratory specimens tested positive for influenza A, vaccine effectiveness among persons aged ? 65 years was 22% (95% confidence interval [CI], -6%-42%) for all influenza-associated deaths, 25% (95% CI, 13%-37%) for deaths occurring within 30 days after an influenza-associated pneumonia/influenza hospitalization, and 19% (95% CI, 4%-31%) for influenza-associated pneumonia/influenza hospitalizations. Because small proportions of deaths, deaths after pneumonia/influenza hospitalizations, and pneumonia/influenza hospitalizations were associated with influenza virus circulation, we estimated that vaccination prevented 1.6%, 4.8%, and 4.1% of these outcomes, respectively. CONCLUSIONS: By using confounding-reducing techniques with 15 years of provincial-level data including vaccination and health outcomes, we estimated that influenza vaccination prevented ~4% of influenza-associated hospitalizations and deaths occurring after hospitalizations among older adults in Ontario.