Ontology highlight
ABSTRACT: Objectives
Recent studies have demonstrated that primordial germ cells (PGC) can be differentiated from human umbilical cord mesenchymal stem cells (hUC-MSCs), and embryonic stem cells (ESCs) in vitro. Nevertheless, efficiencies were low and unstable. Here, whether hUC-MSCs can be induced to differentiate into germ-like cells with the aid of bone morphogenetic protein (BMP4) was investigated.Materials and methods
Human umbilical cord mesenchymal stem cells were freshly isolated and cultured with BMP4. SSEA-1(+/-) cells were purified using magnetic-activated cell sorting (MACS) from the hUC-MSCs, and further induced with BMP4. Quantitative real-time PCR (qRT-PCR) and immunofluorescence analysis were used to determine PGC and germ-like cell-specific markers.Results
Human umbilical cord mesenchymal stem cells differentiated into SSEA-1(+) spherical PGC-like cells efficiently with 12.5 ng/ml BMP4. qRT-PCR and immunofluorescence analysis demonstrated that SSEA-1(+) cells expressed higher levels of PGC-specific markers than SSEA-1(-) cells. Furthermore, SSEA-1(+) cells were induced with BMP4 to differentiate into STRA8, SCP3, DMRT1 and PLZF-positive male germ-like cells, and some sperm-like cells were obtained by 7-14 days after induction.Conclusion
These results suggest that SSEA-1(+) hUC-MSCs can differentiate into male germ-like cells in the presence of BMP4. This study provides an efficient protocol to study germ-cell development using hUC-MSCs.
SUBMITTER: Li N
PROVIDER: S-EPMC6495181 | biostudies-literature | 2014 Aug
REPOSITORIES: biostudies-literature
Li N N Pan S S Zhu H H Mu H H Liu W W Hua J J
Cell proliferation 20140613 4
<h4>Objectives</h4>Recent studies have demonstrated that primordial germ cells (PGC) can be differentiated from human umbilical cord mesenchymal stem cells (hUC-MSCs), and embryonic stem cells (ESCs) in vitro. Nevertheless, efficiencies were low and unstable. Here, whether hUC-MSCs can be induced to differentiate into germ-like cells with the aid of bone morphogenetic protein (BMP4) was investigated.<h4>Materials and methods</h4>Human umbilical cord mesenchymal stem cells were freshly isolated a ...[more]