Unknown

Dataset Information

0

Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry.


ABSTRACT: Proteolysis is an integral component of life and has been implicated in many disease processes. To improve our understanding of peptidase function, it is imperative to develop tools to uncover substrate specificity and cleavage efficiency. Here, we combine the quantitative power of tandem mass tags (TMTs) with an established peptide cleavage assay to yield quantitative Multiplex Substrate Profiling by Mass Spectrometry (qMSP-MS). This assay was validated with papain, a well-characterized cysteine peptidase, to generate cleavage efficiency values for hydrolysis of 275 unique peptide bonds in parallel. To demonstrate the breath of this assay, we show that qMSP-MS can uncover the substrate specificity of minimally characterized intramembrane rhomboid peptidases, as well as define hundreds of proteolytic activities in complex biological samples, including secretions from lung cancer cell lines. Importantly, our qMSP-MS library uses synthetic peptides whose termini are unmodified, allowing us to characterize not only endo- but also exo-peptidase activity. Each cleaved peptide sequence can be ranked by turnover rate, and the amino acid sequence of the best substrates can be used for designing fluorescent reporter substrates. Discovery of peptide substrates that are selectively cleaved by peptidases which are active at the site of disease highlights the potential for qMSP-MS to guide the development of peptidase-activating drugs for cancer and infectious disease.

SUBMITTER: Lapek JD 

PROVIDER: S-EPMC6495252 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2005-09-20 | GSE2744 | GEO
| S-EPMC6387628 | biostudies-literature
2017-03-01 | GSE94728 | GEO
| S-EPMC4528251 | biostudies-literature
| S-EPMC5674010 | biostudies-literature
| S-EPMC6215756 | biostudies-literature
| S-EPMC6314839 | biostudies-literature
2023-11-02 | MSV000093279 | MassIVE
2023-02-21 | MSV000091338 | MassIVE
2022-07-25 | MSV000089970 | MassIVE