Unknown

Dataset Information

0

Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent.


ABSTRACT:

Background

Styrene is a large-volume commodity petrochemical, which has been used in a wide range of polymer industry as the main building block for the construction of various functional polymers. Despite many efforts to produce styrene in microbial hosts, the production titers are still low and are not enough to meet the commercial production of styrene.

Results

Previously, we developed a high L-phenylalanine producer (E. coli YHP05), and it was used as a main host for de novo synthesis of styrene. First, we introduced the co-expression system of phenylalanine-ammonia lyase (PAL) and ferulic acid decarboxylase (FDC) genes for the synthesis of styrene from L-phenylalanine. Then, to minimize cell toxicity and enhance the recovery of styrene, in situ product recovery (ISPR) with n-dodecane was employed, and culture medium with supplementation of complex sources was also optimized. As a result, 1.7?±?0.1 g/L of styrene was produced in the flask cultures. Finally, fed-batch cultivations were performed in lab-scale bioreactor, and to minimize the loss of volatile styrene during the cultivation, three consecutive bottles containing n-dodecane were connected to the air outlet of bioreactor for gas-stripping. To conclude, the total titer of styrene was as high as 5.3?±?0.2 g/L, which could be obtained at 60 h.

Conclusion

We successfully engineered E. coli strain for the de novo production of styrene in both flask and fed-batch cultivation, and could achieve the highest titer for styrene in bacterial hosts reported till date. We believe that our efforts in strain engineering and ISPR strategy with organic solvent will provide a new insight for economic and industrial production of styrene in a biological platform.

SUBMITTER: Lee K 

PROVIDER: S-EPMC6498506 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10801462 | biostudies-literature
2018-02-20 | GSE95575 | GEO
| S-EPMC8628918 | biostudies-literature
| S-EPMC5897543 | biostudies-literature
| S-EPMC8241964 | biostudies-literature
| S-EPMC10101937 | biostudies-literature
| S-EPMC3514110 | biostudies-literature
| S-EPMC5769350 | biostudies-literature
| S-EPMC6767195 | biostudies-literature
| S-EPMC6556219 | biostudies-literature